[1] P.L. García:
The Poincaré-Cartan invariant in the calculus of variations. Symp. Math. XIV (1974), 219–246.
MR 0406246
[2] P.L. García and J. Muñoz:
On the geometrical structure of higher order variational calculus. Proceedings of the IUTAM-ISIMM. Symposium on Modern Developments in Analytical Mechanics (Bologna), Tecnoprint, 1983, pp. 127–147.
MR 0773483
[3] H. Goldschmidt and S. Sternberg:
The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier (Grenoble) 23 (1973), 203–267.
DOI 10.5802/aif.451 |
MR 0341531
[4] M. Gotay:
An exterior differential system approach to the Cartan form. Géométrie Symplectique et Physique Mathématique (Boston), P. Donato et al., Boston, 1991, pp. 160–188.
MR 1156539
[5] H. Hess: Symplectic connections in geometric quantization and factor orderings. Ph.D. thesis, Berlin, 1981, pp. .
[6] M. Horác and I. Kolá:
On the higher order Poincaré-Cartan forms. Czechoslovak Math. J. 33 (1983), 467–475.
MR 0718929
[8] I. Kolá, P. Michor and J. Slovak:
Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993, pp. .
MR 1202431
[11] B. Kupershmidt:
Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism. Lect. Notes in Math. 775, 1980, pp. 162–217.
MR 0569303
[12] J. Muñoz:
Poincaré-Cartan forms in higher order variational calculus on fibred manifolds. Rev. Mat. Iberoamericana 1 (1985), no. 4, 85–126.
DOI 10.4171/RMI/20 |
MR 0850411
[14] J. Rodríguez: Sobre los espacios de jets y los fundamentos de la teoría de los sistemas de ecuaciones en derivadas parciales. Ph.D. thesis, Salamanca, 1990.
[15] C. Ruiz:
Prolongament formel des systemes differentiels exterieurs d’ordre superieur. C. R. Acad. Sci. Paris Sér. I Math. 285 (1977), 1077–1080.
MR 0515877
[17] D. Saunders:
The Geometry of Jet Bundles. Lecture Notes Series, vol. 142, London Mathematical Society, Cambridge University Press, New York, 1989, pp. .
MR 0989588 |
Zbl 0665.58002
[18] J.P. Schneiders:
An introduction to the D-Modules. Bull. Soc. Roy. Sci. Liège 63 (1994), 223–295.
MR 1282516
[19] W.M. Tulczyjew:
The Euler-Lagrange resolution. Lect. Notes in Math. 836, 1980, pp. 22–48.
MR 0607685 |
Zbl 0456.58012
[20] A. Weil:
Théorie des points proches sur les variétés différentiables. Colloque de Géometrie Différentielle, C.N.R.S. (1953), 111–117.
MR 0061455 |
Zbl 0053.24903