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D-MODULES, CONTACT VALUED CALCULUS AND

POINCARE-CARTAN FORM

Ricardo J. Alonso Blanco, Salamanca

(Received October 30, 1996)

1. Introduction and notation

The geometric formulation of the calculus of variations has been carried out in the

last decades in different fashion (see, for instance, [1], [2], [3], [4], [6], [7], [9], [11],
[12], [13], [16]). These methods, used in the process of generalizing from mechanics

to the higher order case and several variables, may seem somewhat artificial. For
instance, in the construction of a general Poincaré-Cartan form, one utilizes a method

involving determination of coefficients under certain prescribed conditions, and other
adhoc techniques. It is not always clear what the real significance is of the role played

by new objects (e.g. a linear connection on the base manifold) that are extrinsic to
the problem.

We offer a new approach that unifies the classical methods and their generalizations

to field theories of higher order and the study of the variational bicomplex in a natural
and rather simple way. We make use of two basic tools; first, a decomposition of

operators that is trivial in the first order case. This is where the above mentioned
connection comes in. Second, we introduce a formal covariant derivation law which

is the geometric analogue of the derivative of variations with respect to time in
mechanics.

For a differentiable manifold M , we make the key remark that the algebra Ωn of

differential forms of maximal degree is a right module over the ring D of differential
operators. With each linear connection onM we associate a morphism whose effect is

to decompose the higher order tangent fields T k, k > 1 (T k ⊂ D) as a composition
of ordinary tangent fields with differential operators of order k − 1. With this we
achieve a factorization, via the exterior differential, of the action of T k on the D-
module Ωn. Mutatis mutandis, it is possible to generalize the method to the valued
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case Ωn⊗A , whenA is a left D-module through the action of the covariant derivative

associated with a derivation law.

Let C be the contact module on the jet spaces of a fibred manifold with base

manifold M . By making use of the formal or total derivative, we define a covariant
derivation law onM with values in C . This law yields a differential C -valued calculus

onM that allows us to recover in a natural way the main objects and manipulations
of the classical variational calculus and then to generalize it to the higher order and

several variables case; in particular, the Euler-Lagrange form appears as a result of
a certain action on the Lagrangian density.

The integration by parts formula (called ‘decomposition formula’ in [6]) relates
the differential of the Lagrangian density, the Euler-Lagrange form and an exact

differential form. As shown in [6], to find a Poincaré-Cartan form is equivalent to
finding an ‘integral’ of this exact form. We do this by means of a constructive process

which is based on the factorization of the action of T k on Ωn ⊗ C .

Obviously, the C -valued calculus admits extension to a calculus with values in the

exterior algebra of C . This extension allows us to define the so-called variational bi-
complex Φr,s. We give a canonical construction (without reference to the coordinate

expressions) of the Euler-Lagrange resolution. Finally, with the same technique with
which we have built the Poincaré-Cartan form (relative to a specific linear connection

on M), we give the decomposition of the spaces Φr,n (dimM = n) explicitly finding
an ‘integral’ in Φr,n−1 of the exact term in this decomposition.

The paper is structured as follows. In §2 we see how a linear connection on M

produces a notion of degree in D . By making use of the homogeneous components of

§2 we find in §3 the decomposition morphism of T k. In §4 we recall some properties
of the D-modules. In §5 we will see how to use the decomposition morphism (§3) to

factorize the action of T k on Ωn. In §6 we make some remarks on Weil’s definition
of the jet spaces and the vertical lift of tangent vectors. In §7 we recall the definition

of the formal or total derivatives. With the results of §7 we give in §8 the definitions
of the structure form, the contact module C and the C -valued differential calculus.

In §9 we recover the fundamental elements of the calculus of variations, generalizing
them to higher order and several variables, and we give our construction of the

Poincaré-Cartan form. Finally, in §10, we apply the above techniques to the Euler-
Lagrange resolution.

We now fix notation and a few conventions that we will use later. For a differ-
entiable manifold M we will write C∞(M) for the ring of infinitely differentiable

functions, TM for the tangent bundle, T ∗M for the cotangent bundle and ∧pM for
the bundle of exterior forms of degree p. If π : N −→ M is a projection between

differentiable manifolds, we will write T v(N/M) for the bundle of vertical tangent
vectors of π; if F −→ M and G −→ M are vector bundles, we will write FN for the
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pullback π∗F and F ⊗M G for the tensor product ; when there is no risk of confu-

sion we will understand that the tensor product is taken before a suitable pullback.
Calligraphic letters will be reserved for the modules of sections of the correspond-
ing vector bundles; for instance, T M will mean the C∞(M)-module of sections of

TM , i.e. the module of tangent vector fields. As an exception Ωp(M) will mean the
C∞(M)-module of sections of ∧pM .

2. Graduation of differential operators

Let M be a differentiable manifold, dimM = n and mx the maximal ideal of

functions vanishing at a point x of M .

A differential operator of order k on M is, by definition, an �-linear morphism
P : C∞(M) −→ C∞(M) that sends mk+1

x to mx for each x ∈ M . We will denote

the set of differential operators of order k on M by Dk.

Let p : M ×� −→ M be the projection onto the first factor, Jkp the fiber bundle
of k-jets of sections of p (i.e. the functions on M) and J kp the module of the

corresponding sections. The map jk : C∞(M) −→ J kp, associating with every
function its k-th Taylor expansion, represents Dk in the following sense: for every

P ∈ Dk there is a unique morphism P : J kp −→ C∞(M) such that P = P ◦ jk.
In other words, Dk is the dual C∞(M)-module of J kp. Therefore Dk is locally

free, with rank
(
n+k

n

)
, and, if (x1, . . . , xn) is a local chart on M , Dk is generated

by ∂α = ( ∂
∂x1
)α1 ◦ . . . ◦ ( ∂

∂xn
)αn as α = (α1, . . . , αn) runs through the multi-indexes

|α| � k (∂0 means the constant function 1). If k < r, then there is a natural
immersion Dk ⊂ Dr (observe that D0 = C∞(M)).

Besides the structure mentioned, every Dk has a second canonical C∞(M)-module

structure. If g ∈ C∞(M) and P ∈ Dk, we define the operator g ∗ P ∈ Dk according
to the following rule: (g ∗ P )f = P (gf)for every f ∈ C∞(M). This new structure

for Dk will be denoted by Dk. The C∞(M)-module Dk is also locally free with the
same local generators.

The subbundle T ∗,kM of J kp comprised of those k-jets whose projections over

M × � are zero is, by definition, the k-th cotangent fibre bundle of M . The fibre of
each x ∈ M is T ∗,k

x M = mx/mk+1
x ⊂ C∞(M)/mk+1

x = Jk
xp. The module of sections

of T ∗,k will be denoted by T ∗,k.

The dual of T ∗,k is called the k-th tangent fiber bundle of M . We will denote it
by T kM . Equivalently, T kM is the incident of � in Jkp. The module of sections

of T kM will be denoted by T kM . The elements of T kM can be characterized by
Leibniz’s rule of derivations of products. On the other hand T kM is, at the same
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time, a quotient and a submodule of Dk; in fact we have the decomposition

Dk � C∞(M)⊕T kM

where we put P = P (1) + (P − P (1)) for each P ∈ Dk.
For the sake of simplicity, we will write T k instead of T kM and T instead of

T 1M . For k � 0, the quotient of the C∞(M)-modules Dk/Dk−1 has the fibre
(mk

x/mk+1
x )∗ � Sk(mx/m2x)

∗ at each point x ∈ M , where ( )∗ means taking the dual

and Sk means the k-th tensor symmetric product.
From the above, making use of the isomorphism (mx/m2x)

∗ � Tx, we infer the

exact sequence
0 −→ Dk−1 −→ Dk −→ SkT −→ 0.

The image under the projection Dk −→ SkT of an element P ∈ Dk is known as

the symbol of P .

Remark 2.1. The same exact sequence holds for the tangent bundles (taking
into account the inclusions T k ⊂ Dk):

0 −→ T k−1 −→ T k −→ SkT −→ 0.

We can consider C∞(M) and SkT as the homogeneous minimal and maximal

degree components of Dk, respectively. We will show how to define the remaining
components for a specific linear connection.

Lemma 2.2. A linear connection ∇ on M gives the module Dk a graduation

via an isomorphism
k⊕

r=0
SkT � Dk (where S0T = C∞(M)).

�����. It suffices to find sections sr for the exact sequences

0 −→ Dr−1 −→ Dr −→ SrT −→ 0 r = 1, . . . , k.

For r = 1, the sequence is

0 −→ C∞(M) −→ D1 −→ T −→ 0

and we take the section s1 : T −→ D1 as the natural inclusion. For r > 1 we define

the section sr : SrT −→ Dr by the rule

sr(D1 . . . Dr) =
1
r

r∑

i=1

(Di ◦ sr−1(D1 . . .Di−1Di+1 . . . Dr)

− sr−1(D∇
i (D1 . . . Di−1Di+1 . . . Dr)))
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where D1 . . .Dr is the symmetric product of r tangent vector fields Di and D∇
i is

the covariant derivative that ∇ induces over Sr−1T .

It is easy to check that each sr is well defined, C∞(M)-linear and it is also a

section of Dr −→ SrT . �

See [5] for another construction of this graduation of Dk.

We obtain the expression of this in coordinates by letting (x1, . . . , xn) be a local
chart for M , ∂i = ∂

∂xi
, ∂•α = ∂α1

1 . . . ∂α
n ∈ SrT , ∂α = ∂α1

1 ◦ . . . ◦ ∂α
n ∈ Dr with

α = (α1, . . . , αn), |α| = r and ∇ the local linear connection defined by (x1, . . . , xn).
Then sr(∂•α) = ∂α.

3. Decomposition morphism of higher order tangent bundles

If P is a differential operator of order k − 1 and D is a tangent vector field, the

composition P ◦ D belongs to T k. This type of compositions defines a C∞(M)-
module morphism that we will explain in what follows.

Define a map

G : Dk−1 ⊗M T −→ T k

where G(P ⊗D) = P ◦D and extending by linearity.

The map G is well defined by the choice of the structure for Dk−1. However, G is
not C∞(M)-linear. Now let Nk be the C∞(M)-module obtained from Dk−1

M ⊗T

by defining the product by functions as follows: for each f ∈ C∞(M), we put
f • (P ⊗D) = (fP )⊗D; i.e., only multiplying f by the first factor and throughout

the first structure for Dk−1. Over Nk, the map G is C∞(M)-linear.

Definition 3.1. Henceforth G : Nk −→ T k shall be known as the composition

morphism.

We are interested in determining a section of the morphism G for subsequent use.

The following is the precise statement of this.

Theorem 3.2. Each linear connection ∇ onM produces a section H∇ : T k −→
Nk of G, i.e. G ◦H∇ = Id. We will call H∇ the decomposition morphism.

�����. It suffices to define the images by H∇ for each of the homogeneous
components of the graduation produced by ∇ (Lemma 2.2). Let D1, ..., Dr be vector

fields on M .

For r = 1, we define H∇(s1(D1)) = D1.
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For r > 1, we put

H∇(sr(D1 . . . Dr)) =
1
r

∑

i

(Di ◦H∇(sr−1(D1 . . .Di−1Di+1 . . . Dr)

−H∇(sr−1(D∇
i (D1 . . . Di−1Di+1 . . . Dr)))

where the symbol ‘◦’ means composing Di with the first factor of the tensor product.
As with sr, it is easy to see that H∇ is well defined and C∞(M)-linear. We will

verify that H∇ is a section of G:

G ◦H∇(sr(D1 . . . Dr)) =
1
r

∑

i

(G(Di ◦H∇sr−1(D1 . . . Di−1Di+1 . . . Dr))

−GH∇sr−1(D
∇
i (D1 . . . Di−1Di+1 . . . Dr)))

=
1
r

∑

i

(Di ◦GH∇sr−1(D1 . . .Di−1Di+1 . . . Dr)

−GH∇sr−1(D
∇
i (D1 . . . Di−1Di+1 . . . Dr))).

By the induction hypothesis, GH∇sr−1 = sr−1, hence

G ◦H∇(sr(D1 . . .Dr)) =
1
r

∑

i

(Di ◦ sr−1(D1 . . . Di−1Di+1 . . . Dr)

− sr−1(D
∇
i (D1 . . . Di−1Di+1 . . .Dr)))

= sr(D1 . . . Dr).

�

Remark 3.3. For orders k = 1 and k = 2 the morphism H∇ is independent of
the connection ∇. Indeed, in order 1 it is clearly independent, and in order 2 we
have

H(D1 ◦D2) =
1
2
(D1 ⊗D2 +D2 ⊗D1 + 1⊗ [D1, D2])

where [D1, D2] is the Lie bracket of D1 and D2. In general it can be deduced from
the construction of H∇ that H∇ depends only on the (k − 2)-jet of the symmetric
connection associated with ∇.

In local coordinates, if ∇ is the connection that the local chart (x1, . . . , xn) in-

duces on M , we have that H∇(∂α) =
∑
i

αi

|α|∂
α−εi ⊗ ∂i where εi is the multi-index

(0, . . . , 0,
(i)
1 , 0, . . . , 0).
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4. D-modules

We have taken certain definitions and properties of D-modules from Schneiders

[18]. These properties will be used in the subsequent sections.

Definition 4.1. The injective limit of the system (Dk)k∈�, where the inclusions
Dk ⊆ Dh for k � h are considered, will be called the ring of the differential operators

(of the manifold M) and denoted by D .

The ring D inherits the C∞(M)-module structure of Dk. On the other hand, D

is a non-commutative ring under composition of operators. Therefore, we need to
distinguish between left and right D-modules. The proof of the next results can be

found in [18].

Proposition 4.2. Let A be a C∞(M)-module and let α : C∞(M) −→ End�A

be the associated multiplication morphism. Let us assume that there exists a map

χ : T −→ End�A defining an �-linear action of T on A such that:

1) [χ(D), α(f)] = α(Df) (resp. −α(Df)),

2) [χ(D1), χ(D2)] = χ([D1, D2]) (resp. −χ([D2, D1])),

3) α(f) ◦ χ(D) = χ(fD) (resp. χ(D) ◦ α(f) = χ(fD))

for every D1, D2, D3 ∈ T and every f ∈ C∞(M).

Then there exists a unique structure of the left (resp. right) D-module enlarging

the actions α and χ.

Corollary 4.3. The exterior algebra Ωn(M) comprised of the forms of maximal
degree possesses a unique structure of the right D-module that extends its structure,

α, of the C∞(M)-module, and also extends the action of T given by ω ·D = −LDω

for any ω ∈ Ωn(M), D ∈ T (LD being the Lie derivative).

Corollary 4.4. Let A1, A2 be two left D-modules and B a right D-module.

Then:

1) The action of T on the C∞(M)-module A1 ⊗M A2 given by D(a1 ⊗ a2) =

Da1 ⊗ a2 + a1 ⊗ Da2 for any D ∈ T , a1 ∈ A1, a2 ∈ A2, extends to a unique

structure of the left D-module on A1 ⊗M A2.

2) The action of T on the C∞(M)-module B ⊗M A2 given by (b ⊗ a) · D =

b ·D⊗ a− b⊗Da for any D ∈ T , b ∈ B, a ∈ A2, extends to a unique structure

of the right D-module on B ⊗M A2.
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5. Factorization of the action of higher order tangent fields on Ωn

Let D be a (tangent) vector field on M and ω a form of maximal degree. Then
for the action defined in 4.3 we have ω ·D = −LDω = d(−iDω) (iDω being the inner

contraction of ω with D), in other words, we can build an explicit integral for the
exact form ω ·D. We want now to extend this result for the action of higher order
vector fields P ∈ T k, k > 1. The key to this resides in the decomposition morphism
(Theorem 3.2).

Theorem 5.1. Given a linear connection ∇ on M , for each P ∈ T k, there is an

�-linear map ΦP : Ωn(M) −→ Ωn−1(M) that makes the next diagram commutative:

Ωn(M)

ΦP

��

·P �� Ωn(M)

Ωn−1(M) Ωn−1(M)

d

��

where ·P is the action of P and d is the exterior differential. In other words, for any

ω ∈ Ωn(M), ΦP ω is an integral of ω · P .

�����. If H∇(P ) =
∑

Q⊗D ∈ Nk then we can define ΦP ω = −∑ iD(ω ·Q)
which gives

dΦP ω = d
∑

−iD(ω ·Q) = ω ·
(∑

Q ◦D
)
= ω · (GH∇P ) = ω · P,

where we have made use of the fact that LD = diD on Ωn(M). �

Remark 5.2. When P is of order 1 or 2, the decomposition morphism is inde-
pendent of the linear connection, as a result of which ΦP is also independent.

On the other hand, provided that dimM = 1, ∇ is another connection and ΦP is
the associated operator, then ΦP can only differ from ΦP in a constant term. Both

ΦP and ΦP depend linearly on P , thus we deduce that this constant term is zero.
Therefore, if dimM = 1 for any order k, ΦP is also independent of the connection.

Remark 5.3. The result obtained in the theorem is automatically generalizable
to the following (‘valued’) case: let A be a C∞(M)-module with a covariant deriva-

tion law such that the Lie covariant derivative converts A into a left D-module
(Lemma 4.2). The C∞(M)-module Ωn(M)⊗M A is now a right D-module (Corol-

laries 4.3 and 4.4). Explicitly: if D ∈ T , ω ∈ Ωn(M) and a ∈ A we put

(ω ⊗ a) ·D = ω ·D ⊗ a− ω ⊗Da = −LDω ⊗ a− ω ⊗ LDa = −LD(ω ⊗ a),
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where LD means the covariant derivative of a byD and LD(ω⊗a) is the Lie covariant

derivative. Hence Theorem 5.1 holds, with the same proof, when one replaces Ωn(M)
by Ωn(M)⊗A , and d by the correspondent exterior covariant differential.

Corollary 5.4. Let L : T k ⊗M Ωn(M) −→ Ωn(M) be the morphism associated

with the action of T k ⊂ D on Ωn(M). Given a fixed linear connection there exists
a map Φ that makes the next diagram commutative:

T k ⊗M Ωn(M)

Φ
��

L �� Ωn(M)

Ωn−1(M) Ωn−1(M)

d

��

�����. Define Φ(P⊗ω) = ΦP ω with P ∈ T k, ω ∈ Ωn(M) and ΦP the operator

defined in 5.1. Extending Φ by linearity the proof is complete. �

Remark 5.5. In the same way as 5.1, Corollary 5.4 is valid in the ‘valued’ case.

6. Jet spaces and vertical lift

Let π : E −→ M be a fibred manifold and Jk = Jk(E/M) the space of k-jets of

sections of π. It is known that there is an isomorphism

T ∗M ⊗J1 T v(E/M) � T v(J1/E),

i.e., if p1 is a 1-jet of J1 that projects over p ∈ E and x ∈ M , with each pair (ωx, Dp),

comprised by ωx ∈ T ∗
x (M) and Dp ∈ T v

p (E/M), we can associate canonically a
tangent vector in T v

p1(J
1/E).

It will be shown in this section how to generalize this operation in higher orders.

The result obtained is equivalent to [7] ((14) of §1). Nevertheless, our calculations
make use of an alternative construction of the jet spaces [14], following Weil’s sug-

gestions (see [20] and [8]).

In agreement with [14], a k-jet pk ∈ Jk over a point x ∈ M is a morphism of

algebras C∞(E) −→ C∞(M)/mk+1
x such that, restricted to C∞(M), this is the

quotient by mk+1
x .

In categorical terminology we would say that pk is ‘a point of E with values in

C∞(M)/mk+1
x ’. The principal advantages of this construction stem from always

working over the same ring C∞(E).
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In accordance with this, the tangent space to Jk at pk vertical to M , T v
pk(Jk/M),

is identified canonically with the derivations over C∞(M) of the ring C∞(E) having
values in C∞(M)/mk+1

x , where the latter is a C∞(E)-module throughout pk (see
[14] for details).

Now let Dpk ∈ T v
pk(Jk/M) and ωx ∈ T ∗,k+1

x M = mx/mk+2
x . Let us denote the

multiplication by ωx on C∞(M)/mk+1
x by ·ωx. We have a composition

C∞(E)
D

pk−→ C∞(M)/mk+1
x

·ωx−→ mx/mk+2
x ⊂ C∞(M)/mk+2

x .

Further, if pk+1 is a (k + 1)-jet over pk, (·ωx) ◦ Dpk can be identified as above
with a tangent vector at pk+1 which is vertical to Jk+1 −→ E (and not only to

Jk+1 −→ M).
Thereby this defines a morphism:

(∗) T ∗,k+1 ⊗Jk+1 T v(Jk/M) −→ T v(Jk+1/E)

(recall that the calligraphic letters mean modules of sections).

Definition 6.1. Henceforth the morphism

δ : T v(Jk/M)Jk+1 −→ T k+1 ⊗Jk+1 T v(Jk+1/E)

obtained from (∗) by transposing T ∗,k+1 shall be called the vertical lift.

To express this in coordinates, let (x1, . . . , xn) be a local chart on M and let
(y1, . . . , ym) be local coordinates on the fibres of π : E −→ M . These charts produce

the usual fibred coordinates (xi, yjα), i = 1, . . . , n, j = 1, . . . m, |α| � k on Jk. Then

δ(
∂

∂yjβ
) =

∑

1�|α|�k,|α+β|�k+1

(
α+ β

β

)
∂α ⊗ ∂

∂yjα+β
,

where ∂α = ( ∂
∂x1
)α1 ◦ . . . ◦ ( ∂

∂xn
)αn , α = (α1, . . . , αn).

7. The formal derivative

In this section the concept of ‘formal’ (also known as ‘total’) derivative will be
defined (refer to [10] or [15]).

By means of the immersion Jk+1 ⊂ J1Jk, we associate with each pk+1 ∈ Jk+1

an element of J1Jk that will be denoted by pk,1. Following [14], pk,1 is a morphism

C∞(Jk) −→ C∞(M)/m2x. Thus for each function f ∈ C∞(Jk) we have pk,1f ∈
C∞(M)/m2x.
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Remark 7.1. With the usual construction of jet spaces, pk+1 is the (k + 1)-jet

of some local section s in x of π : E −→ M , i.e. pk+1 = jk+1
x s. Let s̄ = jks be the

local k-jet prolongation of s. Then pk,1 = j1xs̄ and pk,1f is the class of the function
f ◦ s̄ modulo m2x.

Definition 7.2. Each tangent vector field D ∈ T produces a derivative

D̂ : C∞(Jk) −→ C∞(Jk+1) k � 0

defined by the rule (D̂f)pk+1 = Dx(pk,1f) ∈ C∞(M)/mx � �. We will call D̂ the
holonomic lift ofD to the jets. Similarly, we can consider D̂ as a section of (TJk)Jk+1

or as a map Jk+1 −→ TJk over Jk. Later on we will use the notation D̂ = bk+1(D).

Remark 7.3. The holonomic lifts to different orders are compatible with each
other. This fact allows us to use the notation D̂ without reference to k.

Let (xi, yjα) be fibred coordinates as above. Then ∂̂
∂xi
= ∂

∂xi
+
∑

|α|�k

yjα+εi

∂
∂yjα

.

Definition 7.4. Let D be a vector field on M . We will call the map defined
below the formal inner contraction with respect to D:

iD̂ : Ω
p(Jk) −→ Ωp−1(Jk+1)

defined by the rule (iD̂σ)pk+1 = iD̂
pk+1

σpk , for any σ ∈ Ωp(Jk) and pk+1 ∈ Jk+1

over pk; the second member of the equality being an ordinary contraction (observe

that D̂pk+1 is in TpkJk).

Definition 7.5. We will denote the formal Lie derivative with respect to the
vector field D on M as the derivative

LD̂ : Ω
p(Jk) −→ Ωp(Jk+1)

defined by Cartan’s formula LD̂ = iD̂d+ diD̂ .

The formal Lie derivative verifies the usual properties of the ordinary Lie derivative

(see [10], [15]).
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8. Differential calculus with values in the contact module

In this section we will recall the definition of the contact module and then see

how the restriction of the formal Lie derivative (Definition 7.5) produces a covariant
derivation law.

The holonomic lift, bk : T (M)Jk −→ T (Jk−1)Jk , is a canonical splitting of the

exact sequence

0 −→ T v(Jk−1/M)Jk −→ T (Jk−1)Jk −→ T (M)Jk −→ 0.

Definition 8.1. The retract θk associated with bk is known as the structure

form of Jk. Through pull-back to Jk, θk defines a section of the bundle T ∗Jk ⊗Jk

T v(Jk−1/M).

With the above notation, in a fibred local chart (xi, yjα) we have

θk =
∑

j,0�|α|�k−1
θjα ⊗

∂

∂yjα
where θjα = dyjα − yjα+εidxi.

As is known, a section s̄ of the projection Jk −→ M is holonomic (i.e., is the k-jet
prolongation of some section of π : E −→ M) if and only if θk vanishes on the image
of s̄.

Definition 8.2. We will call the C∞(Jk)-module comprised by those 1-forms
of Jk that become zero over the holonomic sections as the contact module of Jk,

denoted by Ck.

The module Ck is generated by the components of θk (the above ‘θjα-s’). The
fibre bundle associated with Ck will be denoted by Ck.

It is useful to observe that the dual map of θk produces an immersion

(θk)∗ : T v(Jk−1/M)∗Jk −→ (T ∗Jk−1)Jk ,

which identifies the dual of T v(Jk−1/M)Jk with Ck. In particular, the holonomic

lifts of tangent vectors on M are incident with Ck.

Denote the natural projections Jk −→ Jr, 0 � r � k, by πk
r . Each Cr with r � k

induces a submodule of Ck via the pull back by πk
r .

Definition 8.3. We will call the injective limit of the system (Ck, πk
r ) the contact

module C :

C = lim
→

Ck.

596



The restriction of the formal Lie derivative in Definition 7.5 to Ck ⊂ Ω1(Jk)

takes values in Ck+1. Indeed, if s is a local section of π : E −→ M , jk+1s is the
(k + 1)-prolongation and σ ∈ Ck, then because iD̂σ = 0 we have (jk+1s)∗LD̂σ =
(jk+1s)∗iD̂dσ = iDd(jks)∗σ = iDd0 = 0, hence LD̂σ ∈ Ck+1.

In a local chart (xi, yjα) as above, we have L ∂̂
∂xi

θjα = θjα+εi .

Because of the compatibility of the holonomic lifts with the projections πr
k it is

possible to define, for any tangent vector field D on M , the formal Lie derivative

LD̂ : C −→ C .

Recall that C is, in particular, a C∞(M)-module.

Proposition 8.4. The assignment D −→ LD̂ produces a covariant derivation

law on the C∞(M)-module C .

�����. If f ∈ C∞(M), D ∈ T and σ ∈ C we have

LD̂(fσ) = Df · σ + fLD̂σ and L
f̂D

σ = LfD̂σ = ifD̂dσ = f(iD̂dσ) = fLD̂σ.

�

This law allows us to define a C -valued differential calculus on M . In particular,

we will have a formal covariant exterior differential

d̂ : Ωp(M)⊗M C −→ Ωp+1(M)⊗M C

and a formal covariant Lie derivative

L̂D : Ωp(M)⊗M C −→ Ωp(M)⊗M C

(by putting L̂D = iDd̂+ d̂iD).

Remark 8.5. d̂ and L̂D satisfy the relations

d̂(Ωp(M)⊗M Ck) ⊂ Ωp+1(M)⊗M Ck+1

and
L̂D(Ωp(M)⊗M Ck) ⊂ Ωp(M)⊗M Ck+1.

Moreover, in local coordinates we have d̂θjα =
∑
i

dxi ⊗ θjα+εi .

Proposition 8.6. The module C has the structure of a left D-module, precisely

that defined by the L̂D action.
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�����. Let α : C∞(M) −→ End�C be the multiplication corresponding to

the structure of the C∞(M)-module of C and let us define χ : T −→ End�C by
χ(D) = L̂D for any D ∈ T .

We must check properties 1), 2) and 3) of Proposition 4.2 as follows:

For D, D1, D2 ∈ T , f ∈ C∞(M) and σ ∈ C ,

1) [χ(D), α(f)]σ = L̂D(fσ)− fL̂Dσ = Df · σ + fL̂Dσ − fL̂Dσ = α(Df)σ.

2) [χ(D1), χ(D2)]σ = L̂D1 L̂D2σ − L̂D2L̂D1σ = L̂[D1,D2]σ = χ([D1, D2])σ.

3) α(f) ◦ χ(D)σ = fL̂Dσ = fiDd̂σ = ifDd̂σ = L̂fDσ = χ(fD)σ. �

Corollary 8.7. Ωn(M)⊗M C has a right D-module structure (n = dimM).

�����. According to Corollaries 4.3 and 4.4, the former structure is obtained
by extending the following action of T : for any ω ∈ Ωn(M), σ ∈ C and D ∈ T we

put (ω⊗ σ) ·D = ω ·D⊗ σ− ω⊗D · σ = −LDω⊗ σ −ω⊗ L̂Dσ = −L̂D(ω⊗ σ). �

In a fibred local chart (xi, yjα), let D = ∂
∂xi
= ∂i ∈ T , P = ∂β ∈ D and

η =
∑
jα

ηjαθjα ⊗ dx1 ∧ . . . ∧ dxn ∈ Ωn(M)⊗M C . Then

η ·D = −
∑

jα

L̂∂i(ηjαθjα)⊗ dx1 ∧ . . . ∧ dxn

= −
∑

jα

((∂̂iηjα)θjα + ηjαθjα+εi )⊗ dx1 ∧ . . . ∧ dxn

and analogously

η · P =
∑

jα

(−L̂∂)β(ηjαθjα)⊗ dx1 ∧ . . . ∧ dxn =

=
∑

jα

(−1)|β|
∑

γ+ν=β

(
β

γ

)
(∂̂γηjα)θjα+ν ⊗ dx1 ∧ . . . ∧ dxn

where (−L̂∂)β = (−L̂∂1)
β1 ◦ . . . ◦ (−L̂∂n)

βn .

Remark 8.8. The C -valued differential calculus is extensible in an obvious way
to a calculus with values in ∧kC , SkC , etc.

Remark 8.9. If η ∈ Ωn(M)⊗M Ck and P ∈ Dh or ∈ T h then η ·P ∈ Ωn(M)⊗M

Ck+h.

Remark 8.10. Corollary 8.7 and Remark 5.3 say that the factorization Theorem
5.1 is available for the Ωn(M)⊗M C case.
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The passage of the C -valued calculus to the ordinary one is carried out via the

morphism
η : Ωp(M)⊗M Ck −→ Ωp+1(Jk).

This process consists of a combination of introducing Ωp(M) and Ck into Ω·(Jk) and

then alternating. This is equivalent to taking the exterior product, multiplying by
the structure form θk relative to the bilinear product that the duality between Ck

and T v(Jk−1/M)Jk produces (see Definition 8.2).

Definition 8.11. We call η the antisymmetry operator.

The morphism η relates d̂ to a certain differential on Jk.

Definition 8.12. The unique antiderivation of degree 1,

dH : Ωp(Jk) −→ Ωp+1(Jk+1),

such that

1) for p = 0, dH = H ◦ d, where H : Ω1(Jk) −→ Ω1(M)Jk+1 ⊂ Ω1(Jk+1) is the
transposed operator of the holonomic lift bk (Definition 7.2);

2) dh ◦ d = −d ◦ dH

will be called the horizontal differential.

In local coordinates (xi, yjα) we have

dHxi = dxi, dHdxi = 0, dHyjα = yjα+εidxi,

dHdyjα =
∑

i

dxi ∧ dyjα+εi , dHθjα =
∑

i

dxi ∧ θjα+εi .

It is a simple process to check the following:

Proposition 8.13. On Ωp(M)⊗M Ck, dH and d̂ satisfy η ◦ d̂ = dH ◦ η.

9. Construction of the Poincaré-Cartan form

In the classical variational calculus the equations for the critical sections are found

by using integration by parts. Briefly, if the problem is defined by a lagrangian
function L = L (t, qi, q̇i), where t, qi and q̇i are the time, position and velocity

coordinates of a mechanical system, respectively, the variation of L dt is written as

(∗) δ(L dt) =

(
∂L

∂qi
− d
dt

∂L

∂q̇i

)
δqi dt+

d
dt

(
∂L

∂q̇i
δqi dt

)
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by making use of ddtδqi = δq̇i (this ‘δ’ does not relate to the vertical lift).

The construction that we give below is based on an adequate interpretation of
the elements in the above formula. The variation is viewed as a type of vertical

differential in such a way that with the obvious notation, δqi = dqi − q̇i dt, δq̇i =
dq̇i − q̈i dt, δL = ∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i are contact forms; the second term of the second

member of (*) is the formal derivative with d
dt of

∂
∂q̇i

δqi dt, and the last is simply
the result of applying the vertical lift to the structure form (dqi − q̇i dt) ⊗ ∂

∂qi
and

then to acting on L dt.

From the above we deduce that the C -valued differential calculus of §8 appears
as the best framework for the generalization of the calculus of variations to several

independent variables and the higher order case.

In general, let λ be an element of Ωn(M)Jk , i.e. a Lagrangian density of order k

over π : E −→ M , and let θk ∈ Ck ⊗Jk T v(Jk−1/M) be the structure form on Jk.

Definition 9.1. We will call the 1-form θ̄k = δ ◦θk ∈ Ck⊗Jk T k⊗Jk T v(Jk/E)

the vertical lift of the structure form (δ is the vertical lift morphism defined in 6.1).

We will consider also θ̄k(λ) ∈ T k ⊗M Ck ⊗M Ωn(M), the result of contracting dλ

with the index of θ̄k in T v(Jk/E) (i.e., to ‘derive λ by θ̄k’).

Now let us denote by L the morphism given by the action of T k ⊂ D on Ck ⊗M

Ωn(M) (Corollary 8.7 and Remark 8.9):

L : T k ⊗M Ck ⊗M Ωn(M) −→ C2k ⊗M Ωn(M).

Definition 9.2. Let Aλ = L(θ̄k(λ)) ∈ C2k ⊗M Ωn(M) and let us define the
vertical differential of λ as dvλ = θk+1(λ) ∈ Ck+1 ⊗M Ωn(M) (in the same sense

as the definition of θ̄k(λ)). Then we will call the C -valued form E = Aλ + dvλ the
Euler-Lagrange form associated with the Lagrangian density λ.

Remark 9.3. Definition 9.2, written in the form dvλ = E − Aλ, is the identity

corresponding to integration by parts (*) in the classical variational calculus.

Let (xi, yjα) with 0 � |α| � k − 1 be fibred local coordinates in Jk−1 and analo-
gously, in Jk with 0 � |α| � k, and let λ = L ω, where L = L (xi, yjα) ∈ C∞(Jk)
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and ω = dx1 ∧ . . . ∧ dxn. Then

θk =
∑

0�|α|�k−1;j
θjα ⊗

∂

∂yjα
,

θ̄k =
∑

1�|β|;|α+β|�k−1;j

(
α+ β

β

)
θjα ⊗ ∂β ⊗ ∂

∂yjα+β
,

θk+1(λ) =
∑

0�|α|�k;j

∂L

∂yjα
θjα ⊗ ω,

θ̄k(λ) =
∑

1�|β|;|α+β|�k−1;j

(
α+ β

β

)
∂β ⊗ ∂L

∂yjα+β
θjα ⊗ ω,

Aλ =
∑

1�|β|;|α+β|�k−1;j

(
α+ β

β

)(
∂L

∂yjα+β
θjα ⊗ ω

)
· ∂β

=
∑

1�|β|;|α+β|�k−1;j
(−1)|β|

(
α+ β

β

) ∑

γ+τ=β

(
β

γ

)
(−1)|τ |∂̂τ

(
∂L

∂yjα+β

)
θjα+γ ⊗ ω

and

E =
∑

0�|α|;j
(−1)|α|∂̂α

(
∂L

∂yjα

)
θj ⊗ ω where θj = θj0.

Taking into account the coordinate expression for E we obtain

Proposition 9.4. The Euler-Lagrange form E belongs to (C1)J2k ⊗M Ωn(M).

The utility of the integration by parts (Remark 9.3) depends critically on the fact

that Aλ is an exact differential.

Theorem 9.5. By fixing a linear connection ∇ on M , there is a C -valued

(n− 1)-form

Θ1 ∈ C2k−1 ⊗M Ω
n−1(M) such that Aλ = d̂Θ1

from which it can be deduced that dvλ = E − d̂Θ1.

�����. The operator (depending on ∇)

Φ: T k ⊗M Ck ⊗M Ω
n(M) −→ C2k−1 ⊗M Ω

n−1(M)

is constructed as in Corollary 5.4 in such a way that L = d̂◦Φ. Hence Aλ = Lθ̄k(λ) =
d̂(Φθ̄k(λ)). By putting Θ1 = Φθ̄k(λ) the proof is complete. �
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Via the antisymmetry operator η (Definition 8.11), the objects E , Θ1 and dvλ can

be understood as forms in Ωp(Jr) (for suitable values of p and r).
We will use the following notation:

E = η ◦ E , Θ1 = η ◦Θ1 and dvλ = η ◦ dvλ = dλ.

Definition 9.6. We will call the n-form Θ ∈ Ωn(J2k−2)J2k−1 defined by Θ =
Θ1+λ the Poincaré-Cartan form associated with the Lagrangian density λ (and with

the linear connection ∇).
Remark 9.7. In fact Θ ∈ Ωn(Jk−1)J2k−1 because L depends only on the yjα

with |α| � k.

In a fibred local chart (xi, yjα), if ∇ is the local connection produced by (xi) on

M and if H∇ is the associated decomposition morphism (3.2), we have

H∇θ̄k(λ) =
∑

1�|β|
|α+β|�k

j;i

(
α+ β

β

)
βi

|β|∂i ⊗ ∂β−εi ⊗ ∂L

∂yjα+β
θjα ⊗ ω,

Θ1 =
∑

1�|β|
|α+β|�k

j;i

(
α+ β

β

)
βi

|β| (−1)
|β|−1(L̂∂)

β−εi

(
∂L

∂yjα+β
θjα

)
⊗ ωi

=
∑

0�|α|,|γ|,|τ |�k−1
j;i

(α+ γ + τ + εi)!
α!γ!τ !

(−1)|γ|+|τ |
|γ|+ |τ |+ 1 ∂̂

τ

(
∂L

∂yjα+γ+τ+εi

)
θjα+γ ⊗ ωi

=
∑

0�|σ|�k−1
0�|τ |�k−1

j;i

(σ + τ + εi)!
σ!τ !

(−1)|τ |
( ∑

α+γ=σ

(
σ

γ

)
(−1)|γ|

|γ|+ |τ |+ 1

)
·

· ∂̂τ

(
∂L

∂yjσ+τ+εi

)
θjσ ⊗ ωi

where ωi = i∂iω. Finally, we make use of the combinatorial identity

∑

α+γ=σ

(
σ

γ

)
(−1)|γ|

|γ|+ |τ |+ 1 =
|σ|!|τ |!

(|σ| + |τ |+ 1)!

to obtain

Θ = Θ1 + λ

=
∑

0�|σ|,|τ |�k−1
j;i

(σ + τ + εi)!|σ|!|τ |!
σ!τ !(|σ| + |τ |+ 1)! (−1)

|τ |∂̂τ

(
∂L

∂yjσ+τ+εi

)
θjσ ∧ ωi +L ω.
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The above expression coincides with that obtained in [12] and [16].

Theorem 9.8. dλ = E − dHΘ.

�����. This is a direct consequence of Theorem 9.5 and the relations
(η ◦ d̂)Θ1 = (dH ◦ η)Θ1 = dHΘ1, dHλ = 0. �

Remark 9.9. The property enunciated in the last theorem or, equivalently, the
correspondent one in Theorem 9.5 is known as ‘decomposition formula’ in [7]. This

formula makes it possible to find the equations for the critical sections in a variational
problem defined for a given Lagrangian density (see [7]).

As demonstrated in [6], any other form verifying ‘decomposition formula’ as Θ1 is
of the form Θ1 +G, where G ∈ (Ck)J2k−2 ⊗M Ωn−2(M).

Remark 9.10. There is no total agreement on this topic. One can consult [4] and
[13] for a discussion concerning the construction of the Poincaré-Cartan form. See

[1], [2], [3], [9], [11], [12] and [16] for other references of the geometric formulation of
the calculus of variations (naturally, the above list is not exhaustive).

10. Application to the Euler-Lagrange resolution

The C -valued differential calculus of §8 allows us to define intrinsically the ele-
ments of the Euler-Lagrange resolution. We will follow Tulczyjew’s paper [19] (it

can also be consulted in [17]).
We fix the projection π : E −→ M and work on the infinity jet space J∞ =

proj limJk.

Let us consider the tensor products Φr,s = ∧rC ⊗M Ωs(M). Via the antisymmetry

operator, the Φr,s spaces are identified with the (r+s)-forms on J∞ that are r times
vertical and s times horizontal.

The formal Lie derivative (Proposition 8.4) over C extends naturally to the whole

exterior algebra
•∧

C . Analogously, we have a valued formal differential

d̂ : Φr,s −→ Φr,s+1.

In the same way as in Proposition 8.6, one checks that
•∧

C ⊗M Ωn(M) (dimM =

n) is a right D-module. Let us denote by L the action of D over
•∧

C ⊗M Ωn(M),

i.e.

L : D ⊗M

•∧
C ⊗M Ωn(M) −→

•∧
C ⊗M Ωn(M)

P ⊗ σ ⊗ ω �−→ (σ ⊗ ω) • P

where • means ‘action’.
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Remark 10.1. d̂ corresponds, via the antisymmetry operator, to the horizontal

differential dH of [19]. Moreover, this notation is coherent with Definition 8.12.

On the other hand, the vertical lift morphism (Definition 6.1) can be dualized
giving us a morphism δ∗k : Ck+1 −→ Ck ⊗Jk+1 T k . With notation as above, in local

coordinates we have

δ∗kθjα =
∑

β+γ=α
0�|β|�k−1
1�|γ|�k

(
α

γ

)
∂γ ⊗ θhβ.

The morphisms δ∗k are compatible with the inclusions Ck ⊂ Cr, T k ⊂ T r, k < r. In
this way it is possible to define δ∗k on the injective limit, thus obtaining a map

δ∗ : C −→ C ⊗M T ∞

where T ∞ = proj limT k = {P ∈ D/P (1) = 0}. The local expression of δ∗ is the
same as that of δ∗k. Now we extend δ∗ to a derivation over the exterior algebra of C .

We get the map (keeping the notation)

δ∗ :
•∧

C −→
•∧

C ⊗M T ∞.

The composition L ◦ δ∗ is denoted by τ :

τ :
•∧

C ⊗M Ω
n(M) −→

•∧
C ⊗M Ω

n(M).

We will make use of the notation

J = (j1, . . . , jr), ji ∈ �, A = (α1, . . . , αr) with αi a multi-index,

θJA = θj1α1 ∧ . . . ∧ θjrαr ,

θJA,i = θj1α1 ∧ . . . ∧ θji−1αi−1 ∧ θji+1αi+1 ∧ . . . ∧ θjrαr and

ω = dx1 ∧ . . . ∧ dxn.

In this way the elements of ∧rC ⊗M Ωn(M) have the form

µ =
∑

J,A

µJAθJA ⊗ ω with µJA ∈ C∞(J∞).

Therefore

δ∗µ =
r∑

i=1

∑

J,A

(−1)r−i
∑

γi+βi=αi

|γi|�1

∂γi ⊗ (µJAθJA,i ∧
(

αi + βi

γi

)
θjiβi)⊗ ω

=
r∑

i=1

∑

J,A

(−1)r−i
∑

γi+βi=αi

|γi|�0

∂γi ⊗ (µJAθJA,i ∧
(

αi + βi

γi

)
θjiβi)⊗ ω − rµ
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and

τµ = Lδ∗µ =
∑

i,J,A

(−1)r−i(−1)|αi|(L̂∂)
αi(µJAθJA,i) ∧ θji0 ⊗ ω − rµ.

Since for any µ ∈ Φr,s, τ is obtained by applying L, we deduce (Corollary 5.4, Remark

5.5) that for each linear connection ∇ on M , there exists an element Fµ ∈ Φr,n−1

such that τµ = d̂Fµ. Now let us modify the definition of τ over each Φr,n by putting

τ r = τ + r · Id, where Id is the identity map. In local coordinates, if µ is as above,
we have

τ rµ =
∑

i,J,A

(−1)r−i(−1)|αi|(L̂∂)
αi(µJA ∧ θJA,i) ∧ θji0 ⊗ ω.

Moreover, τ rµ = d̂Fµ + r · µ. Finally, if we put τr = 1
r τ r and F ′

µ =
1
r Fµ, then

τrµ = d̂F ′
µ + µ.

One can deduce as in [19] that τr ◦ d̂ = 0. By applying this equality we deduce that

τr ◦ τrµ = τr ◦ d̂F ′
µ + τrµ = τrµ. In other words, τr is a projector in Φr,n.

Theorem 10.2. The subspace Λr = τrΦr,n is a complement of d̂Φr,n−1 in Φr,n:

Φr,n � Λr ⊕ d̂Φr,n−1.

�����. With each µ ∈ Φr,n we assign the decomposition µ = τrµ − d̂F ′
µ. The

rest follows since τr is a projector and τr ◦ d̂ = 0. �

Remark 10.3. Even though F ′
µ depends on the choice of the connection, the

element d̂F ′
µ is canonically defined.

Remark 10.4. The above theorem can be viewed as a generalization of the
procedure in Theorem 9.5 (by taking there µ = dvL ω). As in Theorem 9.5, it is
easy to find the explicit expression of F ′

µ.

Spreading the vertical differential dv to every Φr,n as in Definition 9.2 and following

[19] we can define the variational operators νr = τr+1 ◦ dv. Ultimately, the Euler-
Lagrange resolution is the sequence (see [19])

0 −→ Φ0,0 d̂−→ Φ0,1 d̂−→ . . .
d̂−→ Φ0,n ν0−→ ∧1 ν1−→ . . .

νr−1
−→ ∧r νr

−→ ∧r+1 . . .

The operator ν0 is known as the Euler-Lagrange operator and ν1 is known as the
Helmholtz-Sonin operator (inverse problem of the calculus of variations).
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