Previous |  Up |  Next

Article

Summary:
We prove the existence of solutions of four-point boundary value problems under the assumption that $f$ fulfils various combinations of sign conditions and no growth restrictions are imposed on $f$. In contrast to earlier works all our results are proved for the Carathéodory case.
References:
[ke] P. Kelevedjiev: Existence of solutions for two-point boundary value problems. Nonlin. Anal. TMA 22 (1994), 217–224. DOI 10.1016/0362-546X(94)90035-3 | MR 1258957 | Zbl 0797.34019
[r2] I. Rachůnková: A four-point problem for differential equations of the second order. Arch. Math. (Brno) 25 (1989), 175–184. MR 1188062
[r3] I. Rachůnková: Existence and uniqueness of solutions of four-point boundary value problems for 2nd order differential equations. Czechoslovak Math. Journal 39 (114) (1989), 692–700. MR 1018005
[r4] I. Rachůnková: On a certain four-point problem. Radovi Matem. 8, 1 (1992). MR 1477886
[r1] I. Rachůnková: An existence theorem of the Leray-Schauder type for four-point boundary value problems. Acta UP Olomucensis, Fac. rer. nat. 100, Math. 30 (1991), 49–59. MR 1166425
[rs1] I. Rachůnková and S. Staněk: Topological degree methods in functional boundary value problems. Nonlin. Anal. TMA 27 (1996), 153–166. DOI 10.1016/0362-546X(95)00031-P
[rs2] I. Rachůnková and S. Staněk: Topological degree methods in functional boundary value problems at resonance. Nonlin. Anal. TMA 27 (1996), 271–285. DOI 10.1016/0362-546X(95)00060-9
Partner of
EuDML logo