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ON FOUR-POINT BOUNDARY VALUE PROBLEM

WITHOUT GROWTH CONDITIONS

Irena Rachůnková,* Olomouc

(Received February 19, 1996)

Abstract. We prove the existence of solutions of four-point boundary value problems
under the assumption that f fulfils various combinations of sign conditions and no growth
restrictions are imposed on f . In contrast to earlier works all our results are proved for the
Carathéodory case.

1. Introduction

The paper deals with the four-point boundary value problem

x′′ = f(t, x, x′),(1)

x(a) = x(c), x(d) = x(b),(2)

where a, b, c, d ∈ �, a < c � d < b, J = [a, b] and f : J × �
2 → � is a function

satisfying the Carathéodory conditions. We prove the existence of solutions of (1),

(2) provided f fulfils various combinations of sign conditions. We need no growth
restrictions for f . The results presented here complete our earlier existence theorems

for problem (1), (2) which contained various linear or Nagumo-type growth restric-
tions, see [2], [3] or [4]. Our method of proofs was partially motivated by [1], where

some two-point BVPs were considered. The results of [1] were generalized in several
directions in [6] and [7]. In contrast to the papers mentioned all our results here are
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proved for f satisfying the Carathéodory conditions, i.e.

f(·, x, y) : J → � is measurable for all (x, y) ∈ �
2 ,

f(t, ·, ·) : �2 → � is continuous for a.e. t ∈ J,

sup{|f(·, x, y)| : |x|+ |y| < �} ∈ �1 (J) for any � ∈ �.

In what follows we denote by � (J) the Banach space of all continuous functions
on J with the norm ‖x‖ = {|x(t)| : t ∈ J}, � = �

1(J) the Banach space of all

functions having continuous first derivatives on J with the norm ‖x‖1 = ‖x‖+ ‖x′‖,
� = �1(J) the Banach space of all Lebesgue integrable functions on J with the norm

‖x‖1 =
∫ b

a |x(t)| dt, �∞ (J) the Banach space of all totally bounded functions on J

with the norm ‖x‖∞ = esssup{|x(t)| : t ∈ J}, � � 1(J) the set of all functions having
absolutely continuous first derivatives on J .

2. Main results

Theorem 1. Let there exist real numbers R1, R2, R3, R4, r1, r2 such that r1 � r2,

R1 �= R3, R2 �= R4, R1 � 0 � R2, R3 � 0 � R4, and for a.e. t ∈ J let

f(t, r1, 0) � 0, f(t, r2, 0) � 0,(3)

f(t, x, R2) � 0, f(t, x, R1) � 0 for all x ∈ [r1, r2].(4)

Further, for a.e. t ∈ [d, b] and all x ∈ [r1, r2] let

(5) f(t, x, R3) � 0, f(t, x, R4) � 0.

Then problem (1), (2) has at least one solution u which for all t ∈ J fulfils the

inequalities

r1 � u(t) � r2,(6)

min{R1, R3} � u′(t) � max{R2, R4}.(7)

Example 2. Function f fulfilling the conditions of Theorem 1 can quickly grow
in x and y on J , but on the other hand it cannot be monotonous in y on [d, b].

Suppose that h ∈ [1,∞), h1 ∈ �1 (J), h1(t) > 0 for a.e. t ∈ J , h2 ∈ �∞ (J),
‖h2‖∞ < h, n, k ∈ �, n > k. Then the function

f(t, x, y) = h1(t)(−x2k+1 + y2n+1 + h2(t))(y2 − h2)

satisfies Theorem 1 for r1 = −h, r2 = h, R1 = −2h, R2 = 2h, R3 = −h, R4 = h.
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Theorem 3. Let there exist real numbers R1, R2, R3, R4, r1, r2 such that r1 � r2,

R1 �= R3, R2 �= R4, R1 � 0 � R2, R3 � 0 � R4, and for a.e. t ∈ J let

f(t, x, 0) � 0 for all x ∈ [r1 + L1(b− a), r1],(8)

f(t, x, 0) � 0 for all x ∈ [r2, r2 + L2(b− a)],(9)

where L1 = min{R1, R3}, L2 = max{R2, R4}. Further, for all x ∈ [r1+L1(b−a), r2+

L2(b− a)] let

f(t, x, R2) � 0, f(t, x, R1) � 0 for a.e. t ∈ J,(10)

f(t, x, R3) � 0, f(t, x, R4) � 0 for a.e. t ∈ [d, b].(11)

Then problem (1), (2) has at least one solution u which for all t ∈ J fulfils the

inequalities

(12) r1 + L1(b − a) � u(t) � r2 + L2(b− a), L1 � u′(t) � L2.

Example 4. A function f fulfilling the conditions of Theorem 2 can have the
form

f(t, x, y) = h1(t)(−x+ sin 2�t+ 7 sin y),

where r1 = −1, r2 = 1, R1 = −�/2, R2 = �/2, R3 = −3�/2, R4 = 3�/2 and

h1 ∈ �1 (J) is strictly positive, J = [0, 1].

3. Proofs

We will work with a one-parameter system

(13) x′′ = λf∗(t, x, x′, λ), λ ∈ [0, 1]

where f∗ : J × (�2 × [0, 1])→ � satisfies the Carathéodory conditions and

f∗(t, x, y, 1) = f(t, x, y) on J × �
2 .

Put

(14) f0(x) =
1

b− d

∫ b

d

∫ s

a

f∗(t, x, 0, 0) dt ds− 1
c− a

∫ c

a

∫ s

a

f∗(t, x, 0, 0) dt ds.

Our proofs are based on the following lemma.
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Lemma 5. Let there exist an open bounded set Ω ⊂ � such that

(a) for any λ ∈ (0, 1), each solution u of problem (13), (2) satisfies u /∈ ∂Ω;

(b) for any root x0 ∈ � of the equation f0(x) = 0, the condition x0 /∈ ∂Ω is
fulfilled, where x0 is considered a constant function on J ;

(c) the Brouwer degree d[f0, D, 0] �= 0, where D ⊂ � is the set of constants c such

that the functions u(t) ≡ c belong to Ω.

Then problem (1), (2) has at least one solutions in Ω.

�����. See [5]. �

Lemma 6. Let there exist r1, r2 ∈ �, K ∈ (0,∞) such that r1 � r2 and for

a.e. t ∈ J the inequalities (3) and

(15)
∫ b

a

|f(t, x, y)| dt � K for all x ∈ [r1, r2], y ∈ �

are satisfied. Then problem (1), (2) has at least one solution u with the property

(6).

�����. Choose an arbitrary fixed m ∈ �, m > 1. For (t, x, y) ∈ D put

fm(t, x, y) =





f(t, r2, 0) for x � r2 + 1
m ,

f(t, r2, y) + [f(t, r2, 0)− f(t, r2, y)]m(x− r2) for r2 < x < r2 + 1
m ,

f(t, x, y) for r1 � x � r2,

f(t, r1, y)− [f(t, r1, 0)− f(t, r1, y)]m(x− r1) for r1 − 1
m < x < r1,

f(t, r1, 0) for x � r1 − 1
m

and consider system (13), where

f∗(t, x, y, λ) = λfm(t, x, y) + (1− λ)

[
x− r1

r2 − r1 + 1

]
.

Put r = 1 +max{|r1| , |r2|} and define a set

(16) Ω = {x ∈ � : ‖x‖ < r, ‖x′‖ < K + (b − a)} .

Let us check that problem (13), (2) fulfils the conditions of Lemma 1 on Ω.

(a): Let us prove that for any λ ∈ (0, 1) no solution of (13), (2) belongs to ∂Ω.

Let u be a solution of this problem for some λ ∈ (0, 1). Put v(t) = u(t)− r2− 1
m and

suppose that max{v(t) : t ∈ J} = v(t0) > 0. Since v(a) = v(c) and v(b) = v(d), we

244



can suppose that t0 ∈ (a, b). Thus there exists an interval (α, β) ⊂ (a, b) containing t0

with v(t) � 0 for each t ∈ (α, β), v′(α) � 0, v′(β) � 0. Hence we get for a.e. t ∈ (α, β)

v′′(t) = u′′(t) = λ

(
λfm(t, u, u′) + (1− λ)

[
u− r1

r2 − r1 + 1

])
> 0.

Integrating the last inequality, we obtain a contradiction

0 � v′(β)− v′(α) > 0.

Thus v(t) � 0 on J , which means that u(t) � r2 + 1
m for all t ∈ J. By an analogous

argument we prove that u(t) � r1 − 1
m for all t ∈ J. Conditions (2) guarantee the

existence of at least one zero of u′ on J , so integrating (13) and using (15) we get

‖u′‖ < K + (b − a). Therefore u /∈ ∂Ω.

(b): In view of (14)

f0(x) =
b + d− a− c

2
· x− r1
r2 − r1 + 1

,

thus the equation f0(x) = 0 has the unique root x0 = r1, and the constant function

u0(t) ≡ r1 does not belong to ∂Ω.

(c): Since D = (−r, r) and f0(−r) < 0, f0(r) > 0, the Brouwer degree d[f0, D, 0] �=
0. Therefore Lemma 1 implies that the problem

(17) x′′ = fm(t, x, x′), (2)

has at least one solution in Ω. Repeating this argument for each m ∈ �, we obtain
a sequence (um)

∞
1 of solutions of problems (17). We can see that the sequence is

bounded and equi-continuous in � and so, by the Arzelà-Ascoli Theorem it is possible

to choose a subsequence converging in � to a function u0. Since r1 − 1
m � um(t) �

r2 + 1
m , u0 satisfies (6) and thus it is a solution of (1), (2). �

Lemma 7. Let there exist r1, r2 ∈ �, K ∈ (0,∞) such that r1 � r2 and for

a.e. t ∈ J the inequalities

f(t, x, 0) � 0 for all x � r1,(18)

f(t, x, 0) � 0 for all x � r2,(19)

and

(20)
∫ b

a

|f(t, x, y)| dt � K for all x, y ∈ �

are satisfied. Then problem (1), (2) has at least one solution u with the property

(21) r1 � u(tu) � r2,

where tu is a point in (a, b).
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�����. For t ∈ J , x, y ∈ �, m ∈ � and λ ∈ [0, 1] put

fm(t, x, y) =





f(t, x, y) for |y| > 2
m ,

f(t, x, y) + [f(t, x, 0)− f(t, x, y)]m( 2m − |y|) for 1m < |y| � 2
m ,

f(t, x, 0) for |y| � 1
m

and consider system (13), where

f∗(t, x, y, λ) = λfm(t, x, y) + (1− λ)
r2 − x

|r2|+ |x|
.

Put r = 1 + max {|r1| , |r2|} + (b − a)K + (b − a)2 and define a set Ω by (16).

Now we can follow the proof of Lemma 2. The only difference is that we prove
min {u(t) : t ∈ J} � r2 and max {u (t) : t ∈ J} � r1, which implies (21). Then by

Lemma 1 and a limiting proces we get a solution u of (1), (2) with property (21). �

����� �� ������� �. Suppose that R3 < R1 and R4 > R2. Then there

exists n0 ∈ � such that for all n ∈ �, n � n0 the inequalities R2 + 2
n < R4,

R1 − 2
n > R3 are satisfied. For n � n0 put

hn(t, x, y) =





f(t, x, R4) for R4 < y,

f(t, x, y) for R2 + 2
n � y � R4,

f(t, x, R2 + 2
n ) + w2 for 1n +R2 < y < R2 + 2

n ,

f(t, x, R2) for R2 < y � R2 + 1
n ,

f(t, x, y) for R1 � y � R2,

f(t, x, R1) for − 1n +R1 � y < R1,

f(t, x, R1 − 2
n )− w1 for R1 − 2

n < y < R1 − 1
n ,

f(t, x, y) for R3 � y � R1 − 2
n ,

f(t, x, R3) for R3 > y

where

w2 =

[
f

(
t, x, R2 +

2
n

)
− f (t, x, R2)

]
n

(
y −R2 −

2
n

)
,

w1 =

[
f

(
t, x, R1 −

2
n

)
− f (t, x, R1)

]
n

(
y −R1 +

2
n

)
.

Then hn fulfils (15) with K given by

K =
∫ b

a

(sup {|hn (t, x, y)| : x ∈ [r1, r2] , y ∈ [R3, R4]}) dt.
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Since hn fulfils (3), we get by Lemma 2 that the problem

(22) x′′ = hn(t, x, x′), (2)

has a solution un satisfying (6). Let us prove a priori estimates for u′n which are
independent of un. It follows from (2) that there exist points a0 ∈ (a, c), b0 ∈ (d, b)

with u′n(a0) = u′n(b0) = 0. Suppose that max {u′n (t) : t ∈ [a, b0]} = u′n(z0) > R2+ 1n .

Then z0 �= b0 and there exists (α, β) ⊂ (a, b0) such that u′n(β) = R2, u′n(α) = R2+ 1n
and R2 � u′n (t) � R2 + 1

n for all t ∈ (α, β) . Thus

0 >

∫ β

α

u′′n (t) dt =
∫ β

α

f(t, un, R2) dt � 0,

a contradiction. A similar contradiction occurs provided min {u′n (t) : t ∈ [a, b0]} <

R1− 1
n . Thus we have proved the estimate on [a, b0] . Now, suppose that max{u′n(t) :

t ∈ [b0, b]} = u′n(z1) > R4+ 1n . Then z1 ∈ (b0, b] and there exists (α, β) ⊂ (b0, b) such
that u′n (α) = R4, u′n (β) = R4+ 1n and R4 � u′n (t) � R4+ 1n for all t ∈ (α, β) . Thus

0 <

∫ β

α

u′′n (t) dt =
∫ β

α

f(t, un, R4) dt � 0,

a contradiction. Similarly for min {u′n (t) : t ∈ [b0, b]} < R3 − 1
n . So, we have proved

the estimate on [b0, b], and therefore

(23) R3 −
1
n

� u′n (t) � R4 +
1
n
for all t ∈ J.

From (6) and (23) it follows that the sequence of solutions (un)
∞
n0
to problems (22)

is bounded and equi-continuous in � and thus by a limiting process we can get a
function u which is a solution of problem

(24) x′′ = h(t, x, x′), (2)

where

h(t, x, y) =





f(t, x, R4) for y > R4,

f(t, x, y) for R3 � y � R4,

f(t, x, R3) for y < R3.

By (23), u fulfils the inequality R3 � u′ (t) � R4 for all t ∈ J , and thus it is a

solution of (1), (2) with the properties (6) and (7).
In the case of R3 > R1, R2 < R4 we replace R1 by R3 in the formula for hn and

prove the existence of a solution u by the same argument. Similarly in the case of
R4 < R2. �
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����� �� ������� 	. Using Lemma 3 instead of Lemma 2, we can argue

similarly as in the proof of Theorem 1, only in the formula for the auxiliary function
hn we use a function g instead of f , where

g(t, x, y) =





f(t, r2 +R4(b− a), y) for x > r2 +R4(b− a),

f(t, x, y) for r1 +R3(b− a) � x � r2 +R4(b − a),

f(t, r1 +R3(b− a), y) for x < r1 +R3(b− a).

�
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