[BL] Y. Benyamini, J. Lindenstrauss: Geometric Non-linear Functional Analysis. to appear.
[DS] N. Dunford, J.T. Schwarz: Linear Operators I. Interscience Publishers, New York, 1967.
[F] M. Fabian:
Lipschitz smooth points of convex functions and isomorphic characterisation of Hilbert spaces. Proc. London Math. Soc. 51 (1985), 113–126.
MR 0788852
[K] K. Kuratowski: Topology I. Academic Press, London, 1968.
[Lt] K. Leichtweiß:
Konvexe Mengen. Springer-Verlag, Berlin, 1980.
MR 0586235
[MM] J. Matoušek, E. Matoušková:
A highly non-smooth norm on Hilbert space. (to appear).
MR 1715018
[MS] E. Matoušková, C. Stegall:
A characterization of reflexive Banach spaces. Proc. Amer. Math. Soc (to appear).
MR 1301517
[P] R.R. Phelps:
Convex Functions, Monotone Operators and Differentiabilitypubl Lecture Notes in Math. 1364, Springer-Verlag, Berlin. 1993.
MR 1238715
[R1] R.T. Rockafellar:
Convex integral functionals and duality. Contributions to nonlinear functional analysis, E.H. Zarantello (ed.), New York, London, 1971, pp. 215–236.
MR 0390870 |
Zbl 0295.49006
[R2] R.T. Rockafellar:
Integral functionals, normal integrands and measurable selections. Nonlinear operators and the calculus of variations, Lecture Notes in Math. 543, A. Dold and B. Eckmann (eds.), Bruxeles, 1975, pp. 157–207.
MR 0512209
[VZ] L. Veselý, L. Zajíček:
Delta-convex mappings between Banach spaces and applications. Dissertationes Math. CCLXXXIX, (1989), 48.
MR 1016045