[1] M. E. Adams, V. Koubek and J. Sichler:
Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras). Trans. Amer. Math. Soc. 285 (1984), 57–79.
DOI 10.1090/S0002-9947-1984-0748830-6 |
MR 0748830
[2] M. E. Adams, V. Koubek and J. Sichler:
Pseudocomplemented distributive lattices with small endomorphism monoids. Bull. Austral. Math. Soc. 28 (1983), 305–318.
DOI 10.1017/S0004972700021031 |
MR 0729763
[5] L. M. Gluskin:
Semigroups of isotone transformations. Uspekhi Math. Nauk 16 (1961), 157–162. (Russian)
MR 0131486
[6] V. Koubek:
Infinite image homomorphisms of distributive bounded lattices. Coll. Math. Soc. János Bolyai, 43. Lecture in Universal Algebra, Szeged 1983, North Holland, Amsterdam, 1985, pp. 241–281.
MR 0860268
[7] V. Koubek and H. Radovanská:
Algebras determined by their endomorphism monoids. Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 187–225.
MR 1295117
[10] V. Koubek and J. Sichler:
Finitely generated universal varieties of distributive double $p$-algebras. Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 139–164.
MR 1280987
[11] V. Koubek and J. Sichler:
Priestley duals of products. Cahiers Topologie Gèom. Différentielle Catégoriques 32 (1991), 243–256.
MR 1158110
[12] K. D. Magill:
The semigroup of endomorphisms of a Boolean ring. Semigroup Forum 4 (1972), 411–416.
MR 0272690
[14] R. McKenzie and C. Tsinakis:
On recovering a bounded distributive lattices from its endomorphism monoid. Houston J. Math. 7 (1981), 525–529.
MR 0658568
[17] H. A. Priestley:
Ordered sets and duality for distributive lattices. Ann. Discrete Math. 23 (1984), 36–60.
MR 0779844 |
Zbl 0557.06007
[18] A. Pultr and V. Trnková:
Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam, 1980.
MR 0563525