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Abstract. Any finitely generated regular variety V of distributive double p-algebras is
finitely determined, meaning that for some finite cardinal n(V), any subclass S C 'V of alge-
bras with isomorphic endomorphism monoids has fewer than n(V) pairwise non-isomorphic
members. This result follows from our structural characterization of those finitely generated
almost regular varieties which are finitely determined. We conjecture that any finitely gen-
erated, finitely determined variety of distributive double p-algebras must be almost regular.
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An algebra A = (L, V,A,* ;7,0,1) of the type (2,2,1,1,0,0) is a distributive double
p-algebra if (L,V, A,0,1) is a distributive (0, 1)-lattice, and * and T are, respectively,
the unary operations of pseudocomplementation and dual pseudocomplementation:
the operation * is determined by the requirement that z < a* be equivalent to
z Aa =0, while y > a™ is to be equivalent to y Va = 1.

A distributive double p-algebra A is said to be regular if z V 2* > y A y™ for all
z,y € A. Regular algebras form a variety R.

As shown in [8], the category of all distributive double p-algebras and all their
homomorphisms is universal, that is, it contains a copy of the category of all graphs,
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and hence also a copy of any category of algebras as a full subcategory, see [18].
The universality implies that for every monoid M there is a proper class Zj; of non-
isomorphic distributive double p-algebras A whose endomorphism monoid End(A)
is isomorphic to M. Members of Z); can also be chosen to be regular, and this is
again due to the universality of R, demonstrated in [9].

We say that two algebras are equimorphic if their endomorphism monoids are
isomorphic. A class € of algebras is said to be a-determined if « is the least cardinal
for which any class & C % of pairwise equimorphic algebras with |&| = « has at
least two isomorphic members. Therefore a universal class % of algebras cannot be
a-determined for any cardinal a.

No finitely generated subvariety of R is universal, see [10], or even rich enough
to represent every group as the automorphism group of one of its members [8]. The
least nontrivial subvariety of R, the variety B of Boolean algebras, is 2-determined,
see [12], [13] or [19].

We recall that any variety of distributive p-algebras which is a-determined for some
a must be either 2-determined or 3-determined, see [1], where a further discussion
of other related a-determined classes can also be found.

These results indicate that varieties of distributive double p-algebras may exhibit
widely different categorical properties. In the present paper we show, for instance,
that every finitely generated subvariety V. C R is n-determined for some finite
cardinal n = n(V), and that no finite common upper bound of these numbers exists.

To present the general result in its proper context, we need several additional
concepts.

The rudiment Rud(A) of a distributive double p-algebra A is the least sublattice
of A closed under the formation of relative complements and containing all pseudo-
complements and dual pseudocomplements of A, see [10]. We say that an algebra A
is rudimentary if Rud(A) = A. When directly indecomposable, a rudimentary alge-
bra A is called a nucleus. From [10] we recall that every nucleus from any finitely
generated variety V of distributive double p-algebras is finite.

For any distributive double p-algebra A, let P(A) denote the poset of all prime
filters of A ordered by the reversed inclusion. Thus, for any finite A, we may identify
the poset P(A) with the poset of all join irreducible elements in A. Let Ext(P(A)) C
P(A) denote the set of all members of P(A) that are minimal or maximal, and let
Mid(P(A)) = P(A) \ Ext(P(A)).

Following is one of several characterizations of finitely generated universal varieties
of distributive double p-algebras presented in [10].

Theorem [10]. Let V be a finitely generated variety of distributive double p-
algebras. Then V is universal if and only if there is a nucleus C' € V such that

474



Mid(P(C)) contains a three-element order component M such that the identity is
the only endomorphism of C' extending the identity map of M.

This characterization suggests that systematic investigation of non-universal fi-
nitely generated varieties should center on the properties of their nuclei. The present
paper initiates such investigation by examining finitely generated varieties V for
which Mid(P(C)) of any nucleus C € V is an antichain. We call such varieties
almost regular.

Following Beazer [3], for any distributive double p-algebra A, we let ® 4 denote its
determination congruence, that is, the congruence consisting of all (a,b) € Ax A with
a* = b* and at = b+. If A belongs to a finitely generated variety, then ® 4 is the least
congruence on A for which A/®,4 is regular. If A is also directly indecomposable,
then A/® 4 is a finite simple algebra.

Let B € V for some finitely generated variety V. For any p € P(B), let Ext(p)
denote the set of all members of Ext(P(B)) comparable to p. We say that an
element d € Mid(P(B)) is defective if Ext(d) = Ext(e) for some e € Ext(P(B)),
and let Def(P(B)) denote the set of all defective members of P(B). We recall that
Def(P(B)) = 0 for any B which is rudimentary, see [10].

Davey’s description [4] of Priestley spaces of subdirectly irreducible algebras shows
that a finite algebra B is simple if and only if P(B) is connected and P(B) =
Ext(P(B)), while B is subdirectly irreducible but not simple exactly when P(B)
is connected and Mid(P(B)) = {b} is a singleton. In the latter case, P(B/®p) is
always isomorphic to Ext(P(B)) and two possibilities arise: either b is non-defective,
B is a nucleus, and there is no homomorphism B/®p — B, or else b is defective and
the algebra B/®p is a proper retract of B. Consequently, the rudiment Rud(A) of
an algebra A from a finitely generated variety V provides no information whatso-
ever about that fragment of a subdirect decomposition of A which is determined by
subdirectly irreducible quotients of A possessing proper retracts. Thus, according to
the result of [10] noted earlier, the presence of any combination of subdirectly irre-
ducibles with proper retracts does not affect the universality of a finitely generated
variety V at all. It will be seen that, unlike for universal varieties, a-determinedness
of an almost regular variety V strongly depends on how the two types of subdirectly
irreducibles combine in V.

To state our main result, we let DC denote the class of all those posets P(A) of
prime filters of distributive double p-algebras A for which the subposet Def(P(A))

is convex.

Main Theorem. The following properties of a finitely generated almost regular
variety 'V of distributive double p-algebras are equivalent:
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(1) V is a-determined for some cardinal «;

(2) V is n-determined for some finite cardinal n = n(V);
(3) {P(A) | AV} CDC.

Thus, for instance, every finitely generated variety of regular algebras, the group
universal variety S of double Stone algebras, and countably many other almost reg-
ular varieties are n-determined for some finite n.

The implication (2) = (1) in the Main Theorem is trivial, while (1) = (3) is
proved in the last section, where it is also shown that there is no common finite
upper bound of cardinalities n(V) for finitely generated varieties V C R.

The remainder of the paper is devoted to showing that (3) = (2). The proof uses
Priestley’s duality for distributive double p-algebras. Following a section on prelim-
inaries, we begin to build up a supply of ‘recognizable’ idempotent endomorphisms
in Sections 1 to 3, and their collections in Sections 4 and 5. In Section 6, on any
equimorphic class . C DC we define nine progressively finer equivalences. Then we
show that each of these equivalences decomposes . into finitely many subclasses,
and that any two members of any class of the ninth equivalence are isomorphic.

We hope that the reader will agree that Priestley’s duality is a powerful yet deli-
cate tool, and one that is uniquely suited to structural investigations such as those
presented here.

PRELIMINARIES

We begin with a brief review of the essentials of Priestley’s duality.
Let (X, 7,<) be an ordered topological space, that is, let (X, 7) be a topological
space and (X, <) a partially ordered set. For any Z C X write

(Zl={ze€eX|3z€eZ x2<z} and [Z2)={zxeX|FzeZ =z<uz}.

A subset Z of X is decreasing if (Z] = Z, increasing if [Z) = Z, and clopen if
it is both 7-open and 7-closed. Any compact ordered topological space (X, T, <)
possessing a clopen decreasing set D such that € D and y ¢ D for any z,y € X
with = # y is called a Priestley space.

Following is a well known property of Priestley spaces.

Lemma P.0. If Fy is a closed subset of a Priestley space (X, 7, <), then [Fy) and
(Fy) are closed. If Fy C X is also closed and Fy N (Fy] = (0, then there is a clopen
decreasing set D C X such that Fy C D and FoN' D = (.
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Let P denote the category of all Priestley spaces and all their continuous order
preserving mappings. Clopen decreasing sets of any Priestley space form a dis-
tributive (0,1)-lattice, and the inverse image map f~! of any P-morphism f is a
(0,1)-homomorphism of these lattices. This gives rise to a contravariant functor
D: P — D into the category D of all distributive (0,1)-lattices and all their (0,1)-
homomorphisms. Conversely, for any lattice L € D, let P(L) = (P(L), 7, <) be the
ordered topological space on the set P(L) of all prime filters of L ordered by the re-
versed inclusion, and such that the sets {x € P(L) | A€ z} and {x € P(L) | A ¢ x}
with A € L form an open subbasis of 7. If h: L — L’ is a morphism in D then
h=! maps P(L’) into P(L) and, according to [15], this determines a contravariant
functor P: D — P.

Theorem P.1. (Priestley [15], [16]). The two composite functors PoD: P —
P and Do P: D — D are naturally equivalent to the identity functors of their
respective domains. Therefore D is a category dually isomorphic to P.

The two simple claims below will also be useful.

Lemma P.2. Let (X, 7) be a compact 0-dimensional space. Then any collection
% of clopen sets separating points of X is a subbase of T.

Proof. Let o be the coarsest topology on X for which every U € % is o-
clopen. Then (X, o) is a Hausdorff space, and the identity map (X,7) — (X,0) is
continuous. Since (X, ) is compact, both (X, 7) and (X, o) are compact Hausdorff
spaces, and hence o = 7. O

Lemma P.3. If (X,7) and (Y, 0) are topological spaces and f: X — Y is a
mapping such that f~1(U) is open for any U € % for some subbase % of o, then f
is continuous.

Let Min(X) and Max(X) respectively denote the sets of all minimal and maximal
elements of a Priestley space (X, 7, <), and let Mid(X) = X \ (Min(X) U Max(X)).
For any ¥ C X, denote Min(Y) = (Y] N Min(X), Max(Y) = [Y) N Max(X) and
Ext(Y) = Min(Y) UMax(Y). When Y = {y}, we write Min(y) instead of Min({y}),
and similarly for Max and Ext. If (X, 7, <) is a Priestley space and Y C X is nonvoid,
then the sets Min(Y) and Max(Y"), and hence also their union Ext(Y") are nonvoid.
In particular, Min(z), Max(z) and Ext(x) are nonvoid for every x € X.
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Theorem P.4. (Priestley [17]). Let P: D — P be the functor assigning
Priestley spaces to distributive (0,1)-lattices, and let h: L — L' be a morphism in
D. Then

(1) L is a distributive double p-algebra if and only if (Y] is clopen for every clopen
increasing subset Y of P(L) and [W) is clopen for any clopen decreasing set
W C P(L);

(2) h is a double p-algebra homomorphism iff P(h)(Min(z)) = Min(P(h)(z)) and
P(h)(Max(x)) = Max(P(h)(zx)) for every x € P(L');

(3) for any distributive double p-algebra L, the sets Min(P(L)) and Max(P(L))
are closed;

(4) h is injective if and only if P(h): P(L') — P(L) is surjective;

(5) h is surjective if and only if P(h) is a homeomorphism and order isomorphism
of P(L') onto a closed order subspace Z C P(L) satistying Ext(Z) C Z.

Definition and notation. The Priestley space P(A) of a distributive double
p-algebra A will be called a dp-space, the dual of a double p-algebra homomorphism
a dp-map, and the property from (2) above the dp-property.

For any variety V of distributive double p-algebras, let P(V) denote the category
of all dp-spaces of algebras from V and all dp-maps between them.

For any dp-space X, let End(X) denote the monoid consisting of all dp-maps
f+ X — X and, for any f € End(X), let Im(f) denote its image. Then Im(f) C X
is a closed order subspace of X and Ext(Im(f)) C Im(f) for every f € End(X).

We shall also need the following consequence of Lemmas 1.3 and 1.4 of [7].

Lemma P.5. If X is a dp-space and f,g € End(X) are idempotent, then

(1) the map &: End(Im(f)) — fEnd(X)f defined by &£(k) = kf is an isomor-
phism of End(Im(f)) onto f End(X)f with the inverse £ ~1(h) = fh | Im(f),

(2) Im(f) = Im(g) if and only if there exist h,k € End(X) such that hk = f,
kh=g, hg=fh=h,and kf = gk = k.

We conclude with a simple but useful claim about partially ordered sets.

Lemma P.6. For i = 0,1, let (X;, <) be posets, and let M; be monoids of order
preserving maps of X; for which there exists an isomorphism 1: My — M;. Let
U C Xy and let ¢p: U — X; be a one-to-one mapping such that

elements u,v € U are comparable in Xy exactly when ¢(u), o(v) € o(U) are
comparable in X1;
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there exists a comparable pair {z,y} C U such that for every comparable
pair {u,v} C U there exists an f € My satisfying

{£(2), f(y)} = {u, v} and {P(f)(o(2)), L () e(¥)} = {p(u), p(v)}.

Then the bijection ¢ of U onto ¢(U) C X; is either an order isomorphism or an

order anti-isomorphism.

Proof. We may assume that < y. Then either p(z) < ¢(y) or p(x) = ¢(y).
For any u < v in U, there is an f € My such that f(z) = u, f(y) = v and
{o(), p(v)} = {Y(f)(p@), v(f)(e(y))} is a comparable pair. Since ¢(f) preserves
order, we have p(u) < ¢(v) when p(x) < ¢(y), and p(u) = ¢(v) when p(z) = (y),
so that ¢ either preserves or reverses the order. But ¢ is an isomorphism, so that

1

the bijection ¢~ ": p(U) — U preserves or reverses the order as well. O

1. BASIC IDEMPOTENT dp-ENDOMORPHISMS

Definitions. Let FG denote the class of all dp-spaces X for which the algebra
D(X) belongs to some finitely generated variety V.

For any X € FG, let Rud(X) denote the dp-space of the rudiment of the distribu-
tive double p-algebra D(X). We say that X € FG is rudimentary if Rud(X) = X. A
rudimentary dp-space X is called a nucleus if the algebra D(X) is directly indecom-
posable. We recall that, for X € FG, the algebra D(X) is directly indecomposable
exactly when X is order connected.

Any maximal order connected subset C' C X € FG is closed in X, see [4] or [11].
Any such C will be called a component of X, and the set of all components of X
will be denoted by C(X).

For any Y C X, write K(Y) = J{C € C(X) | CNY # (}. Clearly, K(Y) C X is
the union of all components intersected by Y.

Finally, let AR be the subclass of FG formed by all dp-spaces X for which
Mid(Rud(X)) is an antichain. Any such space will be called almost regular.

Lemma 1.1 [10]. Let kx: X — Rud(X) denote the Priestley dual of the
inclusion map of the algebraic rudiment D(Rud (X)) of the algebra D(X) into D(X)
itself. Then kx(x) = kx (2') if and only if Ext(z) = Ext(z’).

Furthermore, for every dp-map f: X — X' there exists a uniquely determined
dp-map Rud(f): Rud(X) — Rud(X’) such that Rud(f)kx = kx/f.

For any rudimentary R € FG, the set C(R) consists of finite nuclei and has only
finitely many isomorphism classes.
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From Lemma 1.1 it follows that X € FG if and only if all components of Rud(X)
are finite and only finitely many of them are non-isomorphic.

Definitions. For any y € X € FG, set
E(y) = {x € Mid(X) | Ext(z) = Ext(y)}.

Let X € FG. Any x € Mid(X) with kx (z) € Ext(Rud(X)) will be called defective.
According to Lemma 1.1, this means that « € E(z) for some z € Ext(X).

Let C € C(X). If |C| > 1 and E(u) N E(z) # 0 for some z € Min(C) and some
u € Max(C), then Ext(C) = {z,u} and E(x) = Mid(C) for all z € C. In this case,
any element x € Mid(C) is called doubly defective. If |Ext(C)| > 2 and x € E(z)
for some z € Min(C), then x ¢ E(u) for every u € Max(C), and we say that x
is min-defective. A mazx-defective element is defined dually. Any z € C such that
x ¢ E(z) for every z € Ext(C) is non-defective.

For any X € FG, let Def(X) C Mid(X) denote the set of all defective elements
of X.

Finally, let DC consist of all spaces X € FG for which the set Def(X) is convex.

Lemma 1.2 [10]. Let X € FG. If Y C X is closed then K(Y) is closed, if Y is
clopen decreasing or clopen increasing then K (Y') is clopen. If z € X is non-defective,
then E(z) is closed.

The claim below is of central importance, and may be of independent interest. In
algebraic terms, it says that any directly indecomposable image of a rudimentary
distributive double p-algebra R from a finitely generated variety V is a retract of a
direct factor of R.

Lemma 1.3. IfX € FG is rudimentary and C' € C(X), then there exist a clopen
set D = K (D) containing C' and an idempotent g € End(D) with Im(g) = C.

Proof. If the component C is a singleton {c}, then the constant mapping g
with g(X) = {c} fulfils all requirements.

If the component C' has more than one element, we proceed analogously to the
proof of Lemma 4.1 in [10], as follows.

Since Min(C)NMax(X) = 0, Max(C)NMin(X) = @, and C is finite by Lemma 1.1,
for every z € Min(C') there is a clopen decreasing set dA, with dA, N C = {z} and
dA, NMax(X) = 0. Furthermore, for every u € Max(C') there is a clopen increasing
set 1A, with 14, N C = {u}, 1A, N Min(X) = (), and such that i4, NdA, = 0 for
every z € Min(C).

For any z € Min(C) and u € Max(C'), set
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dX; = dA; \ [U{dA, | v € Min(C) \ {z}}),

iXoy = 1Ay \ (U{id: | £ € Max(C) \ {u}}].

Since (X,<,7) is a dp-space and C is finite, dX, is clopen decreasing and z €
dX, C dA, for every z € Min(C'), while ¢X,, is clopen increasing and u € iX,, C iA,
for every u € Max(C). Hence {dX, | z € Min(C)} U {iX, | u € Max(C)} is a family
of pairwise disjoint sets.

Next we set, for every z € Min(C) and every u € Max(C),

dZ, =dX, \ [U{(iX{] | t € Max(C) \ Max(z)}), and

iZy =1X, \ (U{[dXy) | v € Min(C) \ Min(u)}].

Again, the finiteness of C' and the fact that (X,<,7) is a dp-space imply that
dZ, is clopen decreasing and z € dZ, C dX, for every z € Min(C), while iZ, is

clopen increasing and u € iZ, C iX, for every u € Max(C). Hence {dZ. | z €
Min(C)} U {iZ, | v € Max(C)} is a family of pairwise disjoint sets. Furthermore,

(cZ) if p < q for some p € dZ, and g € iZ,, then z < w.

Indeed, p € (iX,] because ¢ € iZ, C iX,, and the definition of dZ, shows that, for
p € dZ, this is possible only when « € Max(z).

In the next step, for every z € Min(C) and every u € Max(C') we set

dB, = ({(iZ:] | t € Max(z)} NdZ,, and

iBy = ({[dZ,) | v € Min(u)} NiZ,.

It is clear that dB, is clopen decreasing, that z € dB, C dZ, C dA, and hence
dB, N C = {z} for every z € Min(C), and that iB, is clopen increasing such that
u € iB, CiZ, C iA, and hence iB, N C = {u} for every u € Max(C). Therefore
{dB, | z € Min(C)} U {iB, | © € Max(C)} consists of pairwise disjoint sets. The
property (cB) below then follows from (cZ), while (BZ) follows from the definition
of dB, and iB,.

(cB) if z € Min(C) and u € Max(C) are such that p < ¢ for some p € dB, and
q € iB,, then z < u.

(BZ) if z € Min(C) and v € Max(C) are such that z < u, then dB, C (iZ,] and
iB, C [dZ,).

Set Do = |U{dB. | z € Min(C)}, D; = |J{iB, | z € Max(C)}. Since Dy is clopen
and decreasing, the decreasing set Do = X\ [Dy) is clopen, and Min(D3) = Min(X)\
Dy. Similarly, D35 = X\ (D1] is clopen increasing and such that Max(D3) = Max(X)\
D;. Hence K(D2) U K(D3) is clopen, and so is the set Dy = X \ (K(D3) U K(D3)).
From the definition of Dy it follows that Min(z) C Dy and Max(z) C D; for every
x € Dy, and that Dy O C. Set

dD, = dB. N Dy for every z € Min(C),
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iD,, = iB, N Dy for every u € Max(C).

Clearly, the set dD, is clopen decreasing and z € dD, C dB, for every z € Min(C),
and ¢D,, is clopen increasing and u € iD,, C iB,, for every u € Max(C). Hence the
family {dD, | z € Min(C)} U {iD,, | v € Max(C)} consists of pairwise disjoint sets,
and (cB) implies that

(cD) if z € Min(C) and u € Max(C) are such that p < ¢ for some p € dD, and

q € iD, then z < u.

These sets also have a strong converse property.

(DD) If z € Min(C), v € Max(C) and z < u, then dD, C (iD,] and iD,, C [dD,).

To justify the first conclusion of (DD), let x € dD, = dB, N D4. From (BZ) it
follows that x < y for some y € iZ,. Then y € D, and, since iZ, is increasing,
we may assume that y € Max(z). But Max(z) C D; and iZ, NiB; = ( for all
t € Max(C) \ {u}, so that y € iB, N D4y N Max(X). This proves the first claim in
(DD). The remainder follows by a dual argument.

For any Z C Min(C) and U C Max(C) define

dDz =\{dD, |z € Z} and iDy = | J{iD, | z € U};

Q(Z)=({ldD.) | z€ Z}) N (D4 \ [dDMin(C)\Z)) or, equivalently,

y€Q(Z) e ye Dyand Z ={z € Min(C) | Min(y) NdD, # 0};

R(U) = ((1(iD.] | u € U}) 1 (Da\ (Dytaxien) or, equivalently,

y€ R(U) < y € Dy and U = {u € Max(C) | Max(y) NiD, # 0};

S(Z,U)=Q(Z)NR(U).

Since we are working in a dp-space and because C is finite, all these sets are
clopen. Since {dD, | z € Min(C)} and {iD, | u € Max(C)} are disjoint families, the
(possibly empty) sets S(Z,U) are pairwise disjoint.

If c € S(Z,U)NC then, since dD,NC = {z} for z € Min(C) and iD,,NC = {u} for
u € Max(C'), we have Z = Min(c) and U = Max(c). Hence ¢ € S(Min(c), Max(c)) =
S. and, because C is rudimentary, S, N C = {c}. Therefore, for any Z C Min(C)
and U C Max(C), either S(Z,U)NC =0 or S(Z,U) = S, for some c € C.

Since each of the finitely many sets S(Z,U) is closed, each set

K(S(z,U)) = | J{C" e C(X) | ¢" € Dy and ¢’ N S(2,U) # 0}
is closed, and the set
= J{K(S(Z,U))| Z € Min(C),U C Max(C),S(Z,U) N C = B}

is closed as well. Clearly, D5 = K(Ds), D5 N C = (), and a component C' of Dy is
contained in D4\ Dj if and only if CN K (S(Z,U)) = 0 implies C'N K (S(Z,U)) =0
for every Z C Min(C) and every U C Max(C).
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For Z; C Zs C Min(C) and Uy C U; € Max(C), and only for such sets, write
T(Z1,Z2, Ul,Ug) = K(S(Z1,U1) N (S(ZQ,UQ)D Then

T(Zy, 22, Uy, Us) = | J{C" € C(X) | 3z € S(Z1,Un),
Jy € S(Zs,Us) v <y € C' C Dy}

is a closed set, so that the finite union
Dg = U{T(Zl, Z2,U1, U2) ‘ S S(Zl,Ul) N C,d S S(Z2,U2) NC =c¢ 7<\ d}

is also closed. Clearly Dg = K(Dg) and Dg N C = {).

Therefore D; = Dy \ (Ds U Dg) is open, D; O C and K(D7) = Dy7. Since
D7 N D5 = (), the open sets H, = S. N D7 form a decomposition of D7 and satisfy
H.NC = {c} for every c € C.

We may thus define a mapping h: D7 — D7 by the requirement that h(y) = ¢ for
ally € H. and ¢ € C. Then h is idempotent, Im(h) = C, and h is continuous because
Im(h) is finite and h=*{c} = H, is open for every ¢ € Im(h). From D; N Dg = ()
it follows that z < y for some x € H. and y € Hy only when ¢ < d in C, and this
shows that h preserves the order.

Next we prove that h preserves extremal elements. If x € Min(D7), then x € dD,
for a unique z € Min(C), so that x € Q({#}), and we need only show that = €
R(Max(z)). But (DD) implies that « € (¢D,] for all v € Max(z) and from (cD) it
follows that x ¢ (iD;] for each t € Max(C) \ Max(z). Hence z € H, and h(z) = z
follows. This also shows that h(dD,) = {z} for every z € Min(C). Analogously we
find that A(iD,,) = {u} for all u € Max(C).

Let y € D7 be arbitrary and h(y) = ¢ € C. Then y € H. C Q(Min(c)), so that
Min(c) = {# € Min(C) | Min(y) NdD, # 0}. From h(dD,) = {z} for z € Min(C)
it then follows that A(Min(y)) = Min(c) = Min(h(y)). Analogously, h(Max(y)) =
Max(h(y)) for any y € Ds.

Since C is closed decreasing and D7 is open decreasing, there exists a clopen
decreasing set Dg with C' C Dg C D7. Then D = K(Ds) is clopen, and D C Dy
because Dy is also increasing. The restriction g of h to D is the required idempotent
dp-map. O

Theorem 1.4. Let X € FG be rudimentary and let € C C(X) be a finite set
containing an isomorphic copy of every member of C(X). Let ¥ C C(X) be disjoint
with € and finite. For every D € 9, let a dp-map pp: D — C € € be given. Then
there exists an idempotent f € End(X) with Im(f) = J% and f | D = pp for
every D € 9.
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Proof. Let ¥ =% U9. Since €’ is finite, Lemma 1.3 implies the existence
of a family {Z¢ | C € €’} of disjoint clopen sets such that C C Z¢ = K(Z¢), and
of idempotent dp-maps gc: Zo — Zc with Im(gc) = C for every C' € €. Thus
Y =X\ (U{Zc | C € €'}) is clopen in X and hence compact. Again by Lemma
1.3, for every component D C Y there exists an idempotent dp-map gp: Zp — Zp
with Im(gp) = D defined on a clopen set Zp satisfying D C Zp = K(Zp) C Y.
Since Y is compact, we may assume that Y = (J{Zp | D € 2’} for some finite
' CC(Y). Clearly 2’N2 = . Since all Zp = K(Zp) with D € 9’ are clopen, we
may also assume that they are pairwise disjoint. For each D € 2’ choose a dp-map
wp: D — C € € arbitrarily. Then a mapping f: X — X defined by

) 9c(y) for all y € Z¢ with C € €,
y =
¢pgp(y) forally € Zp with D e 27U’
is the required idempotent dp-map. O

Definition. For X € AR and any C' € C(X), we define the Stone nucleus
Nuc(C) of C by
Rud(C) if |Ext(C)| # 2,

Nue(C) = {Ext(C) if | Ext(C)] = 2.

It is clear that in the latter case C' represents a double Stone algebra.

Observe that if C' € FG is a Stone nucleus then every x € Mid(C) is non-defective
and E(z) = {z}.

To show some important properties of Stone nuclei, first we recall from Lemma
1.1 that for any X € FG, the surjective mapping kx: X — Rud(X) satisfies
kx(z) = kx(y) exactly when Ext(xz) = Ext(y). In particular, k¢ maps Ext(C)
bijectively onto Ext(kc(C)) with only one exception: if C' € C(X) is such that
| Ext(C)| = 2, then kc(C) = Rud(C) is a singleton.

If, on the other hand, C' € AR has more than two extremal elements, then any
mapping hc: Rud(C) — C such that kohe = 1grua(c) and hoke(z) = 2z for every
z € Ext(C) is a dp-map. Indeed, its continuity follows from the finiteness of Rud(C),
we have ho(Ext(t)) = Ext(u) = Ext(he(t)) for every t = ko (u) € Rud(C), and he
preserves order because Mid(Rud(C)) is an antichain. Furthermore, if z € Mid(C)
is non-defective, then € Im(h¢) for some left inverse h¢e of ke.

A Stone nucleus Nuc(C) = {z,u} of a component C' with Min(C) = {z} and
Max(C) = {u} has a similar property: there is a surjective dp-map lc: C — {z,u}
because for some clopen decreasing set A C C we have z € A and u € C' \ A. The
injection h¢ of {z,u} into C is a dp-map for which Iche is the identity of Nuc(C).
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From these observations it follows that

(A) for any order connected C' € AR and any subspace N C C isomorphic to
Nuc(C), there is an idempotent fy € End(C) with Im(fy) = N.

Let X € AR. If C € C(X) and an idempotent f € End(X) satisfy Im(f)NC # 0,
then f(C) C C and hence Ext(C) C Im(f). Hence Ext(f(t)) = Ext(t) for all t € C.
When |Ext(C)| > 2, this implies that ko fhe = kchce is the identity endomorphism
of Nuc(C). Thus N = fhe(Nuc(C)) C Im(f) N C is a dp-subspace of C' isomorphic
to Nuc(C). For any C with |Ext(C)| < 2 it is clear that N = Ext(C) C Im(f) is
isomorphic to Nuc(C'). Therefore

(B) if X € AR, then for any idempotent f € End(X) and for any C' € C(X),

either f(C)NC = @ or f(C) N C contains a dp-subspace N isomorphic to
Nuc(C).

If C;D € C(X) and Nuc(C) = Nuc(D), then, by (A), there exists a dp-map
g: D — C with finite image. Thus for every dp-map f: C — D there exists
some finite n such that (¢f)" is idempotent. Hence the foregoing observations can
be extended as follows:

(C) if X € AR and if C, D € C(X) with Nuc(C) = Nuc(D) then for every dp-

endomorphism f of X with f(C) C D there exists a dp-subspace N C C with
N = Nuc(C) such that f is one-to-one on N; hence Im(f) N D contains a
dp-subspace N’ isomorphic to Nuc(D).

Even though observations (A), (B), and (C) deal only with connected dp-spaces,
they also inform us that the notion of Stone nucleus might be quite useful.

Definitions. For a given Stone nucleus NV and a dp-space X € FG, write
Cy(X)={C e C(X) | Nuc(C) 2 N}
and

Cia) (X) = (J{Cw (X) | [Cn (X)| > 2}

A family ¥ C C(X) of components of a dp-space X € FG is a Stone plot of X if for
every C' € C(X) there exists a component C' € ¢ with Nuc(C”) = Nuc(C).

Clearly, any X € FG has a finite Stone plot.
Theorem 1.5. Let X € AR, let € be a finite Stone plot of X, and let No C C
be a dp-subspace isomorphic to Nuc(C') for every component C' € €. Let 2 C C(X)

be disjoint with ¢ and finite, and let a dp-map ¢p: D — |J{N¢ | C € €'} be given
for every D € 9.
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Then there exists an idempotent f € End(X) such that Im(f) = |J{N¢ | C € €}
and f | D = pp for every D € 9.

Proof. Letk: X — X’ be the dp-map of X onto its rudiment X’ = Rud(X),
see Lemma 1.1. For j = 1,2, denote ¢; = {C € ¢ | |Ext(C)| = j} and €, = {k(C) |
C € €;}, and write €' = {k(C) | C € ¢}, 2" = {k(D) | D € 2}. Let 2, denote the
set of all D € Z such that pp: D — C € ¢ and 25 = {k(D) | D € 2,}. Clearly, if
D € 2, then | Ext(D)| > 2.

Since every D € Z is connected, so is Im(¢p). Hence there is a unique C' € € such
that Im(¢p) € No C C. By Lemma 1.1, there exists a unique dp-map ¢',: k(D) =
D’ — k(C) with kep = ¢/ k.

Since the set ¥'U2’ C C(X') is finite and k(Min(X)NMax(X)) is closed, for every
C' € €3 UP} there exists a clopen set Vor € X/ with Ver Nk(Max(X)NMin(X)) = 0,
K(Ver) = Ver 2 7, and such that C” is the only member of €5 U 24 intersected by
Veor. Write X4 = {Ver | C" € 65 U 25} and X{ = X'\ Xj. By Theorem 1.4, there
exist idempotents f{ € End(X]) and f; € End(X3) such that Im(f]) = J(€" \ €3),
Im(f}) = UG, and f| | D' = ¢, for every D' € 9"\ D4, f5 | D' = ¢, for every
D' € 94. Then f' = f{ U f5 € End(X") is idempotent.

Since Im(f’) is finite, there exists a clopen set B C X’ such that B = K(B) and
BNIm(f’) =J%s. Hence A = (f'k)"!(B) is clopen, A = K(A) and AN(J%]) =0,
so that there is a clopen decreasing set Ag C A with Min(A) C Ap and Max(A)NAy =
0 and such that, for every D € %5, AgN D = ' (Min(X)) N D—see Lemma P.0.
For every C' € € \ 62, choose he: k(C) — C so that Im(he) = Ne and hek is
the identity of No. Then hoyphk = ¢p for any D € 9\ 5. For C € %5 denote
Min(C) = {yc}, Max(C) = {z¢} and define a mapping f by

hof'k(x) if f'k(z) e C" € €'\ %,
f(z) =1 2c if f'k(z) € C' €64 and = ¢ A,
yc if f'k(z) € C' € € and = € Ay.
Since A contains only components with at least two extremals we obtain that f €

End(X) is idempotent. From the choice of D' € 2’, ¢/,, and Ay it follows that
f 1 D=pp forany D € 2. O

The observation below supplements Theorem 1.5.

Statement 1.6. Let X € FG, and let f € End(X) be an idempotent such that
Im(f) intersects only finitely many components of X. Then for every g € End(X)
with Im(g) C Im(f) there exists an idempotent h € End(X) such that

Im(h) = J{Im(f) N C| C € C(X), CNIm(g) # 0}.
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Proof. Denote ¥ = {C € C(X) | C NIm(g) # 0} and define a mapping h as

follows:
o — {gf(x) for ¢ € (X \U%),
fz) forze Y U9D).

The set of all components intersecting Im(f) is finite, so that f~!(C) is clopen for
every C' € C(X), and hence h € End(X) because f and g are dp-maps. Since
f is idempotent and Im(g) C Im(f), the dp-map h is idempotent and Im(h) =
U{Im(f)NC | C e C(X), Im(g)NC # 0}. O

Theorem 1.7. Let X € FG, and let g € End(X) be an idempotent such that
Im(g) is finite. Let x € Im(g) andy € g~ *{z} satisfy x < y. If F; C g~ '{z}\Min(X)
is a closed set with y € F and such that

(t) veIm(g) "Mid(X), v#x andv ¢ [y) = g *{v} N[F) =0,

and if Fy C g~ '{x} is another closed set with x € Fy and [F}) N Fy = (), then there is
an idempotent f € End(X) with Im(f) = Im(g) U {y}, Fo C f~{z}, F1 C f~Yy},
and such that f~1{z} = g~ {2} for all z € Im(g) \ {x}.

Proof. Theset G = U{g v} | v € Mid(X) \ ([y) U {z})} is closed because
g is a dp-map and Im(g) is finite. From the hypothesis and from (t) it then follows
that [F}) and the closed set Fy UG U Min(X) are disjoint. Since X is a Priestley
space, there is a clopen increasing set U D [F}) disjoint with Fo UG UMin(X). Since
x ¢ Max(X), we have g~1{x} N Max(X) = ), so that the set Y = g~ {z} N U is
contained in Mid(X), and is increasing in g~ '{xz}.

Set

ft) =

Y forallt €Y,
g(t) forallte X\Y.

Then f is idempotent with Im(f) = Im(g) U {y}, Fo C f~'{z}, F1 C f~Y{y} and
f~Hz} = g7z} for all z # z. Since Y is clopen and g is continuous, the map
f is continuous as well. Since g € End(X) is idempotent and z € Im(g), we have
g(z) = z for all z € Ext(K(z)). But then Ext(y) = Ext(z) follows from y € K(x)
and ¢g(y) = x. Moreover, f(z) = g(z) for all z € Ext(X) because Y C Mid(X).
These two facts imply that f(Ext(t)) = Ext(f(¢)) for all t € X.

To show that f preserves order, it is enough to consider comparable t € Y and
t' € X \Y. For such elements we have g(t) = =z, f(t) = y and f(¥') = g(t').
If ! < ¢, then f(t') = g(t') < ¢g(t) = ¢ < y = f(t) because g preserves order.
Suppose that ¢ < t’. Since U is increasing and ¢t € U, we have t' € U, and from
Y = g {2} NU it then follows that x = g(¢) < g(¢). In particular, g(#') ¢ Min(X).
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If g(t') € Mid(X) and f(t) € f(¢'), theny £ g(¥') and hence ' € G, which contradicts
the fact that GNU = 0. In the remaining case we have g(t') € Max(z), and
ft) =y <gt') = f(t') follows from Max(z) = Max(y). O

Lemma 1.8. Let X € AR, let h € End(X) be idempotent, and let Dy, 21 C
C(X) be finite disjoint sets such that Im(h)ND = () for every D € 99U %,. For each
D € 99U 21, let ¢p be a dp-map defined on D and factorizing through Nuc(D),
and such that ¢p(D) C Im(h) for all D € 9y and pp(D) C D for each D € 2.

Then there is an idempotent f € End(X) such that f | D = ¢p for every
D e 2yU 2, and Im(f) = Im(h) U J{Im(pp) | D € 21}.

Proof. Since 2 = 2y U 2, C C(X) is finite, from Lemma P.0 and Lemma 1.3
it follows that there is a family {Vp|D € 2} of mutually disjoint, clopen, increasing
and decreasing sets satisfying Vp 2 D and VpNIm(h) = @ for every D € 2, and such
that there exists a surjective dp-map fp: Vp — Nuc(D). It can be also assumed
that, for any =,y € D, we have fp(z) = fp(y) exactly when ¢p(z) = ¢p(y). For
any D € 2, let gp: Nuc(D) — X be a dp-map for which gpfp = ¢p. Then the
map f defined by

) gpfp(t) forte Vp with D € 2,
B h(t) for all other ¢

satisfies our claim. O

Remark 1.9. To formulate a more practical condition that is equivalent to
P(V) C DC for a finitely generated variety V, suppose that X € FG contains
elements z,y, z € Mid(X) such that z is min-defective, y is max-defective, z is non-
defective, and [x) N E(z) # 0 # (y] N E(z). We claim that there exists a surjective
dp-map h: X — Y for which h{z,y,z} C Mid(Y), h(z) < h(z) < h(y) and h(z)
is non-defective. To prove this claim, we observe that x, y, z must belong to the
same component C' of X, and that E(z) is closed, see Lemma 1.2. Thus the set
E(z) and all singletons in X \ E(z) form a closed decomposition 6 of X such that
X/0 is Hausdorff. The surjective map h: X — X/0 = Y is therefore continuous
and induces an order on Y such that Y is a dp-space and h: X — Y is a dp-map.
Clearly h(z) < h(z) < h(y) and h(z) is non-defective. Therefore Y ¢ DC and D(Y')
is isomorphic to a subalgebra of D(X).

Thus if V C DC is a variety and X € P(V), then [z)NE(z) =0 or (y|NE(z) =0
for any min-defective x, max-defective y and non-defective z in X.
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2. r-MAPS

Throughout this and subsequent sections, we restrict our attention to dp-spaces
from AR.

It is easy to see that if f € End(X) is idempotent then, for any g € End(X),
fg = g exactly when Im(g) C Im(f).

Notation. For any f,g € End(X), we write g < f instead of fg = g whenever
f is idempotent. When g is also idempotent, we write g < f, while ¢ < f means
that g, f € End(X) are idempotents and Im(g) is a proper subset of Im(f).

For any idempotent f € End(X), let [f] be the set of all idempotents g € End(X)
satisfying g < f and f < g. Hence g € [f] means that f, g € End(X) are idempotents
and Im(f) = Im(g). We say that such idempotents are equivalent.

If f: X — Y is a dp-map and C € C(X), then f(C) C D for a uniquely
determined D € C(Y'). From the fact that a Stone nucleus of any component is
its retract, see (A), it follows that there exists a dp-map f’: Nuc(C') — Nuc(D).
Conversely, if C and D are connected and if there is a dp-map h: Nuc(C') — Nuc(D)
then (A) again implies the existence of a dp-map f: C — D.

Definition. A subspace S of X € AR is called a Stone kernel of X if it satisfies
these three conditions:

(rl) for every C' € C(X) there exists a D € C(X) with SN D # ) and Nuc(D) =
Nuc(C),

(r2) if Cp,C1 € C(X) are distinct and SN Cy # O # SN Cy, then Nuc(Cp) %
Nuc(Ch),

(r3) if C € C(X) and SNC # P then SN C is isomorphic to Nuc(C').

It is clear that for any Stone kernel S of any X € AR, the set {C € C(X) | SNC #
(0} is a minimal Stone plot of X.

Definition. Any idempotent f € End(X) such that Im(f) is a Stone kernel of
X will be called an r-map.

An isomorphism %: End(X) — End(Y) is an R-isomorphism if for any g €
End(X), ©¥(g) is an r-map if and only if ¢ is an r-map.

Statement 2.1. Let X,Y € AR. Then

(1) if S C X is a Stone kernel of X then S is finite and there exists an r-map
f € End(X) with Im(f) = S;

(2) if f € End(X) is an r-map and g € End(X) is idempotent, then g is an r-map
if and only if Im(f) is isomorphic to Im(g);
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(3) ifvp: End(X) — End(Y") is an isomorphism such that ¢ (f) is an r-map for
some r-map f € End(X), then ¢ is an R-isomorphism;

(4) if fo, f1,-.., fn—1 € End(X) are r-maps, then there exist r-maps go, g1, - - ,
gn—1 € End(X) such that g; € [f;] and g;9; = g; foranyi,j € {0,1,...,n—1};
if, moreover, fo(Im(f;)) = Im(fo) for alli € {1,...,n—1}, then go = fo may
be chosen;

(5) if f;, g; are r-maps such that f;g; = f; and g;f; = ¢; for i = 0,1, fo € [f1],
and fo(z) = f1(z) for all z € Im(go) NIm(g1), then there exist r-maps hy and
hi such that h; € [g;], hih1—; = h; and f; = fi_jh1_;g; fori =0,1;

(6) if f € End(X) is an r-map and for every x € Mid(X) N Im(f) an element
vy € E(x) is given, then the mapping g defined for y € X by

o) = {f(y) if f(y) € Ext(X),

is an r-map of X;

(7) for every x € X \ Def(X) there exists an r-map [ € End(X) with « € Im(f);

(8) ifx,y € X aresuch that either Nuc(K (x)) 2 Nuc(K (y)), or K(z) = K(y) and
Ext(z) # Ext(y), then there exists an r-map f € End(X) with f(x) # f(y);

(9) if f € End(X) is an idempotent and f > g for some r-map g € End(X), then
for every x € Im(f)\ Def(X) there exists an r-map g, € End(X) with g, < f
and gy ($) =

(10) if f,g € End(X) are r-maps and h € End(X), then h(Im(f)) = Im(g) if and

only if ghf = hf and every idempotent ¢’ € End(X) with ¢’ < g satisfies
ghf#hf.

Proof. (1) follows from the definition of a Stone kernel and Theorem 1.5.

(2) is a consequence of the definition of an r-map.

(3) follows from (2) and Lemma P.5.

If f,g € End(X) are r-maps and C' € C(X) is such that Im(f)NC # 0 # Im(g)NC,
then (f TC)(g 1 C)=fCand (g C)(f]C)=g] C. Both statements of (4)
then follow by Theorem 1.5 because the image of any r-map intersects only finitely
many components of X.

Fori = 0,1, denote 9; = {C € C(X) | Im(g;)NC = 0 # Im(g;—;)NC}. Then Z; is
finite and, by Lemma 1.8, there is an r-map h; € [g;] such that h;(x) = g;f1-:(x) for
all x € 2;. A direct calculation verifies the required expressions, and (5) is proved.

Since {vg | € Im(f)NMid(X)} UExt(Im(f)) is a subspace of X € AR isomorphic
to Im(f), claim (6) follows from (1).

(7) follows from Theorem 1.5 and (6).

(8) follows from the definition of an r-map.
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We turn to (9) now. If f € End(X) is an idempotent such that g < f for some
r-map g of X, then any Stone kernel of Im(f) is isomorphic to any Stone kernel
of X. By (7) applied to Im(f), for every x € Im(f) \ Def(X) there is an r-map
g, € End(Im(f)) with € Im(g,,). But then g, = ¢, f € End(X) is an r-map with
z € Im(g,), and g, < f. Thus (9) is proved.

One implication in (10) is clear, and the other follows from Statement 1.6, (C),
and the definition of an r-map. O

Definition and notation. An idempotent f € End(X) is called a dr-map if
there exists exactly one equivalence class [g] of r-maps with ¢ < f, and h € [g] for
any idempotent h € End(X) with g < h < f. For a dr-map f and an r-map g < f,
we shall use r(f) to denote any member of [g] for which r(f)f = r(f).

Lemma 2.2. Let € Def(X), and let f € End(X) be an r-map such that
Im(f)NK(x) # 0. Then there exists a dr-map g € End(X) with Im(g) = Im(f)U{x}
and fg = f exactly when, for every y € Mid(X) \ Def(X),

E(y) N ((«] N[x)) # 0 implies Im(f) N E(y) N ((z] N [x)) # 0.

Moreover, for any z € Def(X) we can assume that g(z) # g(x), except when

x and z are min-defective and x < z, or
r and z are max-defective and z < x.

Finally, an idempotent f € End(X) is a dr-map if and only if Im(f) = Im(g) U{x}
for some r-map g and some x € Def(X).

Proof. Assume that = is defective and f € End(X) is an r-map satisfying the
hypothesis. Then the assumptions of Theorem 1.7 or of its dual are satisfied by f,
Fy = {2}, and Fy = {u,2z} N f~1(u) with f(x) = u, and Theorem 1.7 or its dual
gives an idempotent g € End(X) with ¢g(z) # g(z), Im(g) = Im(f)U{z} and fg = f.
Clearly, g is a dr-map. The converse is clear.

Let f € End(X) be a dr-map. Then Im(r(f)) C Im(f) for an r-map r(f). Let
x € Im(f)\Im(r(f)). If z were non-defective then, by Statement 2.1(9), there would
exist an r-map ¢’ with € Im(¢’) and ¢’ < f. But then ¢’ ¢ [r(f)]—a contradiction.
Therefore x must be defective. For every non-defective z € Mid(X) such that E(z)N
((z] U [x)) # 0 we have Im(f) N E(2) N ((z] U [z)) # 0 because f(E(z)) C E(z). By
Statement 2.1(6), there is an r-map g < f such that Im(g) N E(z) N ((z] U [z)) # 0
whenever E(z) N ((z] U [z)) # 0. We then apply the first part of the proof to obtain
a dr-map ¢’ € End(X) with Im(¢") = Im(g) U {z}. Thus g < ¢’ < f, so that ¢’ € [f]
and Im(f) = Im(g’). The converse implication is clear. O
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Notation. For any dr-map f € End(X), let d(f) denote the defective element
z € Im(f).

The statement below summarizes properties of dr-maps.

Statement 2.3. Let XY € AR. Then:

(1)
(2)

3)

(10)
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for every x € Def(X), there is a dr-map f such that d(f) = z;

if x;y € X are min-defective then x < y if and only if for any dr-maps
fyg € End(X) with d(f) = =, d(g) = y and every r-map h € End(X), we
have hfg # fyg;

if z,y € X are max-defective then y < x if and only if for any dr-maps
fy9 € End(X) with d(f) = =z, d(g) = y and every r-map h € End(X), we
have hfg # fyg;

if f,g € End(X) are dr-maps, then d(f) = d(g) if and only if hf'g" # f'¢
and hg'f' # ¢'f' for all f' € [f], ¢’ € |g] and every r-map h € End(X);

for any defective x € X and any y € X with © # y there exists a dr-map
1 € End(X) with £(x) £ (3);

if: End(X) — End(Y) is an R-isomorphism then

for every g € End(X), g is a dr-map if and only if ¢(g) is a dr-map, and

for any two dr-maps go, g1 € End(X), d(go) = d(g1) exactly when d(v(go)) =
d(¥(91));

if g, x1 € Def(X) are such that Nuc(K (x)) = Nuc(K (1)) and if there exist
r-maps f; € End(X) for ¢ = 0,1 such that Nuc(K (z9)) = Nuc(K (fo(xo))),
folzo) = filz1) and fo(xo] = fi(x1], then there exist dr-maps g; € End(X)
with d(g;) = @i, gig1—i = gi, and f; | K(x;) = (fi—ig1—) | K(z;) fori =0,1;
if f € End(X) is a dr-map and for every non-defective x € Mid(X)NIm(f) an
element v,, € E(x) is given such that v, < d(f) whenever x < d(f), v, = d(f)
whenever x > d(f) then the mapping g defined for y € X by

o) = {f(y) if f(y) € Ext(X) UDef(X),
vi) i f(y) € Mid(X) \ Def(X)

is a dr-map of X with d(f) = d(g);

an x € Def(X) is doubly defective if and only if for every dr-map f € End(X)
with d(f) = x there exist two distinct r-maps g; € End(X) with g; f = g; and
g; < ffori=0,1;

if f € End(X) is an idempotent such that f > g for some r-map g € End(X),
then for every x € Im(f) N Def(X) there exists a dr-map g, € End(X) with
9o < [ and d(g.) = x;



(11) if f,g € End(X) are dr-maps and h € End(X), then h(Im(f)) = Im(g) if
and only if ghf = hf and g'hf # hf for every idempotent ¢’ € End(X) with
g <g.

Proof. From Lemma 2.2 and Statement 2.1(6) we obtain (1).

Next we turn to (2), (3) and (4). If f € End(X) is a dr-map then, for any
g € End(X), either d(f) € Im(fg) and hence hfg # fg for any r-map h € End(X),
or else d(f) ¢ Im(fg) and r(f)fg = fg for any r-map r(f) € End(X). Thus if g €
End(X) is a dr-map such that either d(f) = d(g), or d(f) < d(g) are min-defective,
or d(f) > d(g) are max-defective, then hfg # fg for any r-map h € End(X).
Conversely, if either x,y are min-defective and = £ y, or z,y are max-defective and
x %y, or x,y are doubly defective and = # y then, by Lemma 2.2 there exists a
dr-map f € End(X) with d(f) = = # f(y). Then for any dr-map g € End(X) with
d(g) = y we have r(f)fg = fg for any r-map r(f) € End(X). This completes the
proof of (2), (3) and (4).

Let © € Def(X) and y # x. If the Stone nuclei of K(z) and K(y) are not
isomorphic then (5) follows from Statement 2.1(8). If Nuc(K(x)) = Nuc(K(y)),
then there is an r-map ¢ such that g(K (x)) C K(y) by Statement 2.1(4), and g maps
Ext(K (x)) bijectively onto Ext(K (y)). Assume that g(y) = g(x). If y € Ext(X),
then © = f(z) # f(y) for any dr-map f with d(f) =«. If y € Mid(X) then z, y are
both min-defective (or max-defective or doubly defective), and there exists a dr-map
f with f(x) # f(y), by Lemma 2.2. If g(y) # g(z), then the existence of such an f
is clear. This proves (5).

If ¢ is an R-isomorphism, then (a) in (6) follows from the definition of a dr-map,
and (b) in (6) is a consequence of (a) and (4).

Let xo,z1 € Def(X). By Statement 2.1(4) and 2.1(6), for ¢ = 0,1 there exist
r-maps h; € End(X) with h; f; = hy, fih; = f; and such that, for every y € Mid(X),
E(y)N((z;]U[x;)) # 0 implies Im(h;) N E(y) N ((z;]U[x;)) # 0. By Statement 2.1(5),
there exist r-maps g, € End(X) such that ¢gi¢;_, = g., g} € [hi], and figih1_i = fi1_s.
Lemma 2.2 then supplies dr-maps g; € End(X) with d(g;) = x; and ¢} = g.g;, and
(7) follows.

(8) follows from Statement 2.1(6) and Lemma 2.2.

To prove (9), let f € End(X) be a dr-map with d(f) = z. If ¢ € End(X) is
an r-map with gf = g and g < f, then Im(g) = Im(f) \ {z} and hence for any
ue X, g(u) =gf(u) = f(u) whenever f(u) # z, and g(u) = gf(u) = g(r) whenever
f(u) = z. Since g(u) = u for any u € Ext(x), we conclude that if = is min-defective
and {y} = Min(z) then g(z) = y, if x is max-defective and {z} = Max(x) then
g(x) = z. If z is doubly defective and {y} = Min(z), {2z} = Max(z) then g(z) =y
or g(z) = z, and both cases occur. Thus (9) is proved.
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Let f € End(X) be an idempotent such that f > g for some r-map g € End(X)
and let € Im(f) N Def(X). Then any Stone kernel of Im(f) is isomorphic to any
Stone kernel of X. Since any z € Im(f) is defective in Im(f) exactly when it is
defective in X, from (1) we obtain a dr-map ¢, € End(Im(f)) with d(g},) = =. But
then g, = ¢g..f € End(X) is a dr-map with d(g,) = = and g, < f. This proves (10).

Let f,g € End(X) be dr-maps and h € End(X). If h(Im(f)) = Im(g) then it is
clear that the condition in (11) is satisfied. Conversely, assume that the condition
holds. Then Im(hf) C Im(g) and, by Statement 1.6, Im(h f) and Im(g) intersect the
same components. From (C) it follows that Im(r(g)) C Im(hf). From Im(hf) C
Im(g) and r(g)hf # hf we then obtain that d(g) € Im(hf). Thus h(Im(f)) = Im(g),
and (11) is proved. O

Theorem 2.4. A space X € AR is finite if and only if End(X) is finite.

Proof. Clearly, if X is finite then End(X) is finite. Conversely, if X is infinite
then for every z € X there exists an r-map or a dr-map f, € End(X) with = €
Im(f,). Since Im(f,) is finite, it follows that the set {f, | z € X} C End(X) is
infinite. O

Definition.  An idempotent f € End(X) is a br-map if and only if f is <-
maximal amongst idempotents with the property

(a) 90,91 < f, 9091 = 9o, 9190 = g1 imply go = g1.

First we prove a technical lemma.

Lemma 2.5. If f € End(X) is an idempotent satisfying (q), then Im(f) satisfies
(r2) and the following condition:

(bl) If z,y € Im(f) N Mid(X) are distinct and Ext(z) = Ext(y), then x, y are
both either min-defective or max-defective, and

((z] Ufz)) N (Mid(Tm(f)) \ Def (X)) # ((y] U [y)) N (Mid(Tm(f)) \ Def (X)).

Proof. Assume that f € End(X) satisfies (q).

First we observe that any idempotents hg, h1 € End(Im(f)) satisfying h;hy1—; = h;
for ¢ = 0,1 must coincide. Indeed, if hg # h; then the maps g; = h;f € End(X)
would be distinct idempotents satisfying g;g1—; = g; for ¢ = 0, 1—a contradiction.

This observation and Statement 2.1(4) imply that any two Stone kernels of Im(f)
coincide, so that there is exactly one equivalence class [f'] of r-maps of Im(f). There-
fore distinct components intersecting Im(f) must have non-isomorphic Stone nuclei,
and this proves (r2).

494



We turn to (bl). Suppose that z,y € Im(f) N Mid(X) are distinct and such that
Ext(xz) = Ext(y). If z, y are non-defective, then Statement 2.1(6) implies the exis-
tence of two distinct Stone kernels of Im(f), contradicting the previous paragraph.
Thus x and y are defective. If

((z] Ufz)) N (Mid(Tm(f)) \ Def (X)) = ((y] U [y)) N (Mid(Im(f)) \ Def(X)),

then we apply Theorem 1.7 or its dual to f’, Fy = {z,y}, and z or y, to obtain
dr-maps fo, f1 of Im(f) such that r(fo) = r(f1) = f', d(fo) = =, d(f1) = y, and
fi(x) =y, foly) = x. Thus f;f1—; = fi and fo # f1 — a contradiction to the initial
observation. Therefore

((z] Ufa)) N (Mid(Tm(f)) \ Def (X)) # ((y] U [y)) N (Mid(Im(f)) \ Def (X)),

which also shows that = and y cannot be doubly defective. From Ext(z) = Ext(y)
it then follows that z and y are both either min-defective or max-defective. This
demonstrates (bl). O

Statement 2.6. Let X,Y € AR. Then:

(1) there exists a br-map f € End(X);

(2) the image Im(f) of any br-map f is finite;

(3) for any br-map f € End(X) there exists exactly one equivalence class [g] of
r-maps g < f;

(4) ifv: End(X) — End(Y) is an isomorphism then f is a br-map if and only if
P(f) is a br-map.

Proof. Let ¢ € End(X) be an r-map. Let % denote the set of all classes of
idempotents h € End(X) satisfying (q) and h > g. Then J# # () because g € 5. If
h € 7 then Im(h)\Def(X) = Im(g) by Lemma 2.5 and, moreover, | Im(h)\Im(g)| <
21Im(9I+1 " Therefore any chain in 27 with respect to < has the length at most
21m(9)1+1 and thus # has a maximal element [f]. Any maximal element of /7 is a
br-map, and (1) is proved.

(2) follows from Lemma 2.5.

To prove (3), consider a br-map f € End(X). First we prove that Im(f) satisfies
(r1). To do so, suppose that there is a component D such that Nuc(C) % Nuc(D)
for every C' € C(X) with Im(f) N C # 0. Then Lemma 1.8 implies the existence of
an idempotent h with Im(h) = Im(f) U N for some dp-subspace N C D isomorphic
to Nuc(D).

Suppose that go, g1 < h satisfy g;g1—; = ¢; for i = 0,1. Since Nuc(D) % Nuc(C)
for every C' € C(X) intersecting Im(f), either Im(¢g;) " D = N or Im(g;) N .D = ) for
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i =0, 1. In the second case g; < f for ¢ = 0,1, and hence gy = g1 because f satisfies
(q). In the first case, we have go(z) = g1(z) for all z € g5 *(N). If g; fgi(D) € Im(f),
then ¢;fg:(D) = N follows from (C) because g; < h, and hence g;f(N) = N.
But then Nuc(K(f(N))) = N, a contradiction. Therefore g/ = g;fg; < f is an
idempotent, glgi_;, = gi for ¢ = 0,1, and go = ¢1 exactly when g) = ¢}. But f
satisfies (q), and go = ¢1 follows. Therefore (q) holds for h > f, in contradiction to
the maximality of f. This shows that f satisfies (r1).

Since f € End(X) is an idempotent, (B) implies that for any component C' € C(X)
either C NIm(f) = @ or C NIm(f) contains a dp-subspace isomorphic to Nuc(C).
Since f also satisfies (rl), there exists a Stone kernel S of X contained in Im(f)
and hence, by Statement 2.1(1), there exists an r-map g < f. The unicity of the
equivalence class of r-maps contained in Im(f) then follows from Lemma 2.5. This
proves (3).

From the definition of a br-map we immediately obtain (4). O

3. 2r-MAPS

In this section, we introduce 2r-maps—idempotent endomorphisms reflecting spe-
cific relations of two r-maps. We begin with the definition of a supremum of a finite
set of idempotents.

Definition and notation. Let & C End(X) be a finite set of idempotents.
We shall write h = sup ./ to denote any idempotent h € End(X) satisfying h > f
for every f € &7, and such that k > h for every idempotent k& € End(X) satisfying
k> fforall feo.

It is clear that any idempotent i € End(X) with Im(h) = J{Im(f) | f € &} is a
supremum of a given finite set .«# C End(X) of idempotents.

Definition and notation. An idempotent f € End(X) is called a 2r-map
if there exist non-equivalent r-maps go, g1 < f such that f = sup{go,¢1} and g €
[go] U [g1] for any r-map g < f.

For any 2r-map f we denote

Af = A(Im(go),Tm(g1)) = (Im(go) \ Im(g1)) U (Im(g1) \ Im(go)).

Lemma 3.1. If f is a 2r-map, then exactly one of the following two cases occurs:

(1) there exist distinct Cy,C1 € C(X) with isomorphic Stone nuclei such that
Af CCyUC) and Af NC; = Nuc(C;) fori=0,1,

(2) there exist distinct non-defective xg,x1 € Mid(X) such that x1 € E(x¢) and
Af ={xo,z1}.
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In either case, if go, g1 < f are non-equivalent r-maps then Im(f) = Im(go) UIm(g1).

Proof. Let f be a 2r-map, and let go,g1 < f be r-maps with [go] # [¢1]-

First suppose that Im(go) N Cy # @ = Im(g1) N Cy for some Cy € C(X). Since
Im(g1) is a Stone kernel of X, there must exist a Cy € C(X) \ {Co} with Nuc(Cp) =
Im(g1) N Cy, and Im(go) N C; = () because go satisfies (r2). Also, the dp-subspace
S = (Im(go) N Co) U (Im(g1) \ C1) is a Stone kernel of X, and thus there exists an
r-map go with Im(g2) = S C Im(f), by Statement 2.1(1). Clearly g» ¢ [g1] and,
since f is a 2r-map, this implies that go € [go]. But then Im(g1) \ C1 = S\ Cy =
Im(go) \ Co. By Theorem 1.5, there exists an idempotent dp-map h € End(X) with
Im(h) = Im(go)UIm(gy). But then Im(f) = Im(go)UIm(g1) because f = sup{go, g1}
Hence Af C CyUCq, and AfNC; = Im(g;)NC; is isomorphic to Nuc(C;) for i = 0, 1.
This describes the first case and proves that Im(f) = Im(go) UIm(g1) in this case.

We may thus assume that Im(gg) and Im(g;) intersect the same components of X.
Then Ext(Im(go)) = Ext(Im(g1)), and hence Af C Mid(Im(go) U Im(g1)). Since f
is a 2r-map and gg, g1 are r-maps, Statement 2.1(6) implies that, for i = 0,1, there
exists exactly one z; € Im(g;) \ Im(¢g1—;), and 1 € E(xp). Then Af = {zg,x1}.
This concludes the proof of the first statement.

To prove the second statement in case of Af = {xg, z1}, we set g = gof, and note
that gf = g € [go]. Define h: X — X by

W) = {xl for t € f~Hua1},
g(t) forte X\ fHazi}

It is clear that h is an idempotent with Im(h) = Im(go) UIm(g;). Since f~{z;} C
g {xo} and these two sets are clopen and convex, and from the choice of g, it follows
that h € End(X). But then Im(f) = Im(go) UIm(g1) because f =sup{go,g1}. O
Definition. = We now specify five types of 2r-maps as follows:
c2r-map—this is any 2r-map f such that Af is a disjoint union of two iso-
morphic Stone nuclei,
p2r-map—this is any 2r-map f such that Af consists of two non-defective
elements from Mid(X),
t2r-map—this is any 2r-map f for which there exist an h € End(X) and an
r-map g < f such that hg < f is an r-map, h%?g = g and hg ¢ [g],
n2r-map—this is any 2r-map f which is not a t2r-map.
e2r-map—this is any n2r-map f—with its non-equivalent r-maps go,91 <
f—such that for every r-map g ¢ [go] U [g1] for which there exist n2r-maps
fo>g,90 and f1 > g, g1, and for all g} € [go], g € [91] and h € End(X) such
that hg(, hg} are equivalent r-maps, we have hg < hgj.
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We proceed to interpret these properties in structural terms.

Lemma 3.2. A 2r-map f is a t2r-map if and only if f is either a c2r-map or a
p2r-map for which Af = {xg,x1} is an antichain.

Definition.  Any ¢2r-map f for which Af C Mid(X) is an antichain will be
called a pt2r-map.

Proof of Lemma 3.2. Let f be a t2r-map, and let g < f and h be as in the
definition above. If f is not a ¢2r-map then, by Lemma 3.1, there is an xy € Mid(X)
such that Af = {xo, 21} C E(xo). If o € Im(g), then h(xzg) = z1 because hg is an
r-map satisfying hg ¢ [g], and h(z1) = 2o because h?g = g. Since h preserves order,
the set {xg, 21} must be an antichain.

To prove the converse, let f be a c2r-map, and let Cy, C; be distinct components
with Af C Cy U Cy. Let go,91 < f be non-equivalent r-maps with Im(g;) N C; # 0.
By Statement 2.1(4), we can assume that ¢g;g1—; = g; for i = 0, 1. Define a mapping
h by

gif(z) ifxze f71(Cy),
h(z) =< gof(x) ifxe f~1(Cy),
f(x) ifze X\ fYCyuy).

Since the image Im(f) of f € End(X) is finite, the map h is continuous, and h €
End(X) follows. Clearly hg; = g1—; for i =0, 1, and hence f is a t2r-map.

Let f be a 2r-map for which Af = {zg,21} C E(x¢) is an antichain, and let
90,91 < [ be non-equivalent r-maps with z; € Im(g;) for ¢ = 0,1. Then ¢;g1—; = ¢;
for i = 0,1. Formal replacement of C; by {z;} in the above definition of h defines a
dp-map h' because {zg,x1} C F(x) is an antichain. From hg; = g1_; for i = 0,1 it
then follows that f is a t2r-map. O

Remark. Thus any c2r-map is a t2r-map, and any n2r-map is a p2r-map.

Corollary 3.3. Let X have distinct components C; with isomorphic Stone nuclei
N; C C; fori=0,1. Then for every r-map go with Im(gg) N Cy = Ny there exists a
c2r-map f with Im(f) = Im(go) U Ny.

Proof. Since go is an r-map, C; N Im(go) = @. By Lemma 1.8, there is an
idempotent f € End(X) with Im(f) = Im(go) U N1. But then Im(f) \ N; and
Im(f) \ No are the only two Stone kernels contained in Im(f), and hence f is a
c2r-map. O

Lemma 3.4. A 2r-map f is an n2r-map if and only if Af = {x,y} C Mid(X)
is a 2-element chain with y € E(x).

498



Furthermore, if x € Mid(X) is non-defective and y € E(z) is such that x < y then,
for any closed sets Fy, By C E(x) such that x € Fy, y € E1, (Fo]N[Ey) =0 and for
every r-map g with @ € Im(g), there exists an n2r-map f with Im(f) = Im(g) U {y}
and Ey C f~Ya}, By C f~Y{y}.

Proof. Since an n2r-map f is not a ¢2r-map, the set Af = {z,y} must be a
2-element chain, by Lemmas 3.1 and 3.2.
The second statement follows immediately from Theorem 1.7. O

Next we give a sufficient condition for the existence of a pt2r-map f with a given
Af. We note that, in general, the requirement that Af = {x,y} be an antichain
does not suffice.

Lemma 3.5. Let x € X € AR be non-defective and such that E(z) is an
antichain, and let Eo, E1 C E(x) be closed disjoint sets with y € Ey and x € Ej.
Then for any r-map g with x € Im(g), there is a t2r-map f > g such that Af =
{29}, Fo C f~'{y} and By C f~'{x}.

Proof. Since g(E(z)) = {z}, we have Eg U E; C g~ '{z} = Z. The set Z is
clopen, convex and Z N K (z) = E(x).

There is a clopen decreasing set U C X such that Ey C U and E; C Z\ U.
The set V.= ZNUN(Z\ U] is then closed and, since Z N K(z) = E(z) is an
antichain, we must have V' N K(z) = (. The union of components S = K (V) and
the component K (z) are closed, by Lemma 1.2, and SN K (z) = (. Hence there is a
clopen decreasing set 7" such that 77N S = () and K(z) C T’. By Lemma 1.2, the
union of components 7' = K(T") is clopen, E(z) C T and T'NS = (). Then the set
U =T nNU is clopen and decreasing, and such that W = U’ N Z is decreasing in
Z,Ey CW and Ey N W = (). We claim that W is also increasing in Z. Indeed, if
u < v for someu € Wandve Z\ W, thenu,v e TNZ,uecU andv ¢ U, so that
u € V C S—a contradiction because T'N .S = (). Hence W is clopen, increasing and
decreasing in Z, Eg C W, and EyNW = (). Set

N y for t € W,
1) = g(t) forte X \W.

Then f € End(X) because Im(g) is finite. Since Im(f) contains no Stone kernels
other than Im(g) and (Im(g) \ {z}) U {y}, we conclude that f is a 2r-map. By
Lemma 3.2, the idempotent f is a t2r-map with Af = {z,y}, Eo C f~{y} and
E; C f~Yax}. O

Statements 2.1(8), 2.3(5), Lemmas 3.4 and 3.5, and Corollary 3.3 give the following
claim.
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Corollary 3.6. If X € AR then for every pair of distinct points u,v € X there
exists either an r-map or a dr-map or a 2r-map f € End(X) with f(u) # f(v).

Since the set E(z) C Mid(X) is closed whenever x € Mid(X) is non-defective,
see Lemma 1.2, every such x is comparable to a minimal and a maximal element of
Next we characterize e2r-maps.

Lemma 3.7. Let f be an n2r-map of an X € AR with Af = {z,y} and = < y.
Then f is an e2r-map if and only if x is minimal in E(x) and y is maximal in E(x).

Proof. Let f be an n2r-map with Af = {z,y} C E(x), and let go,91 < f
be r-maps such that z € Im(go) and y € Im(g;). Hence go(y) = go(z) = = and
91(y) = g1(z) = y.

If = is not minimal in E(z), then E(z) contains a chain z < x < y. Statement
2.1(6) and Lemma 3.4 supply an r-map g ¢ [go] U [g1] with z € Im(g) and n2r-maps
fi > g, such that Im(f;) = Im(g;) U {z} for i = 0,1. Hence fo(y) = . Set h = fo.
Then hgi, go € [hgol, hg = g, and hgohg = gohg # hg because gohg(z) # 2 = hg(z),
and hence f is not an e2r-map. A dual argument applies when y is not maximal in

For the converse, suppose that z < y are extremal in F(z). Let g be an r-map and
let f; > g,¢9; be n2r-maps for i = 0,1. Then Afy = {x, 2z} and Af; = {y, z} for some
z € E(z) comparable to both = and y, and this is possible only when z < z < y.

Let h € End(X) be such that hgo and hg; are equivalent r-maps. By Statement
2.1(2), h is one-to-one on Im(g;) for i« = 0,1. Thus h(z) = h(z) = h(y). Since
Im(g) \ {z} = Im(go) \ {z}, we obtain Im(hg) = Im(hgo) and hence hg < hgo.
Therefore f is an e2r-map. O

Next we prove a statement concerning comparability of doubly defective points.

Lemma 3.8. Let z,y € X be doubly defective. Then x, y are comparable if
and only if there exist dr-maps f,g € End(X) satisfying d(f) = z, d(g) = y and
r(f) =r(g), and for any such maps there exists a k = sup{f, g} such that

(1) ifh

(2) ifh
and hg # f for every h € End(X) with hf = g.
Moreover, if x, y are comparable, then Im(k) = Im(f) U Im(g).

k is a dr-map, then h € [f]U [g];

<
< k is an r-map, then h € [r(f)];

Proof. Ifz,y € X are comparable and doubly defective, and if f € End(X) is a
dr-map with d(f) = z, then, by Lemma 2.2, there exists a dr-map g € End(X) with
d(g) =y and r(f) = r(g) and, by Theorem 1.7 or its dual, there exists an idempotent
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k € End(X) with Im(k) = Im(f) U {y}. Then k = sup{f, ¢} and thus any dr-map
h < k belongs to [f] U [g], and any r-map h < k belongs to [r(f)]. If h: X — X
is a mapping such that hf = g and hg = f, then h(xz) = y and h(y) = z. Hence
h cannot preserve ordering, and therefore h is not a dp-map. Thus both statements
hold.

Conversely, assume that f, g € End(X) are dr-maps such that d(f) = z, d(g) = v,
r(f) = r(g) where z,y € X are doubly defective, and that there exists a k = sup{f, g}
satisfying both conditions. By Statement 2.1(9), Im(k) \ Def(X) = Im(r(f)) and,
by Statement 2.3(10), Im(k) N Def(X) = {z,y}. Thus Im(k) = Im(f) UIm(g) and
K(x) = K(y). If x, y are incomparable, we define

k(t) forte X\ kY x,y},
h(t)=<y for t € k= {z},
x for t € k={y}

Obviously, h € End(X), and fk, gk € End(X) are dr-maps with d(fk) = x, d(gk) =
y, r(fk) = r(gk), k = sup{fk, gk}, and hfk = gk and hgk = fk—a contradiction.
Thus x and y must be comparable. O

Definition and notation. Any dp-map k satisfying conditions of Lemma 3.8
will be called an ndr-map. For any ndr-map k, write Ak = {z,y}.

Statement 3.9. Let X € AR. Then:

(1) if fo, f1 € End(X) are p2r-maps satisfying Nuc(K(Afy)) = Nuc(K(Af1))
and such that g(Afy) C E(Afy) for some dp-map g, then there exists a
k € End(X) with k(z) = z for all z € Ext(Im(f1)) and k(Im(fo)) = Im(f1)
whenever fy is a pt2r-map or f, is an n2r-map;

(2) if fo, f1 € End(X) are ndr-maps, then k(Im(fy)) = Im(f;) for some k €
End(X);

(3) if fo, f1 € End(X) are both either p2r-maps or ndr-maps, and if h € End(X),
then h(Im(fo)) = Im(f1) (and hence also h(Afy) = Afy) if and only if
fihfo = hfo and khfy # hfo for every k € End(X) with k < fi;

(4) if f; € End(X) are ¢2r-maps such that Nuc(K (xp)) = Nuc(K (x1)) for x; €
Af; with i = 0,1, then there exist h; € [f;] with h;h1_; = h; for i =0, 1.

(5) Let f be an n2r-map or a pt2r-map for which E(Af) is an antichain. If
g,90,91 € End(X) are r-maps such that g < f, Im(g;) N E(Af) # 0 and
9i9 = i, 99; = g for i = 0,1, then Im(go) N E(Af) =Im(g1) N E(Af) if and
only if f'go = f'g1 for all f' € [f] such that f'g; are r-maps for i =0, 1.

Proof. Let fo,f1 € End(X) be either p2r-maps with Nuc(K(Afy)) =
Nuc(K (A f1)) or arbitrary ndr-maps. By Statement 2.1(4), there exist an f{ € [fo]
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and an r-map h € End(X) such that hf) < fi is an r-map. It is clear that
hfy(z) = z for all z € Ext(Im(f1)). In case when fo, fi are p2r-maps and
Nuc(K(Afy)) = Nuc(K(Af1)), Lemma 1.8 and the existence of a dp-map g with
g(Afo) € E(Af1) allow us to assume that h(Afy) C E(Af1) as well.

Suppose that Af; = {x;,y;}, where either x; and y; are incomparable or x; < y;
for i = 0,1. To prove (1) and (2), define a mapping k by

hfo(u) if fo(u) & Afo,
k(u) =4 o1 if fi(u) = xo,
Y1 if fo(u) = yo-

Since Im(fo) is finite and f} and h are dp-maps, we conclude that k is continuous,
has the dp-property, and k(Im(fy)) = Im(f;). Furthermore, k(z) = z for all z €
Ext(Im(f1)) follows from a similar property of hfj. Also, k preserves order except
in case when zy < yo and z1, y1 are incomparable. Thus (1) and (2) are proved.

To prove (3), we first observe that h(Im(fy)) = Im(f1) clearly implies the condition
in (3). To prove the converse, note that fihfo = hfo implies that Im(hfo) C Im(f1).
If go,91 < f1 are non-equivalent r-maps, then Im(go) C h(Im(fy)) or Im(g;) C
h(Im(fo)), by Statement 1.6 and (C). By the hypothesis, g;hfo # hfo for i = 0,1,
so that Im(g1—;) € h(Im(fo)) for ¢ = 0,1. But then Im(f;) = Im(go) UIm(g1) C
h(Im(fo)), and (3) is proved.

Now we turn to (4). Assume that C;, D; € C(X) are such that Nuc(Cp) = Nuc(Ch)
and the ¢2r-maps f; € End(X) satisfy Af; C C; UD; for i =0, 1.

With no loss of generality we may assume that C; # D; for i,j € {0,1}. By
Statement 2.1(4), there exist r-maps g; € End(X) with g; < f;, C; NIm(g;) # 0 and
9i91—i = g; for i = 0,1. By Lemma 1.8, we may assume that g;(Co U C; U Dy U
D;) C C; for i = 0,1. Also by Lemma 1.8, there exists a ¢2r-map hg € [fo] with
goho = go and ho(D1) C Dg. Then for any u € Do NIm(hg) there exists exactly one
vy € D1 NIm(f1) with ho(vy,) = u. This enables us to define hy: X — X by

(@) ho(x) for x € X \ hy (Do),
xT) =
! Uy for z € hy ' (u) and u € Dy.

Since hg is a ¢2r-map and Nuc(D;) = Nuc(Dg) = Im(f;) N D1 we obtain that
hi € End(X) and hy € [f1]. Clearly, hihi_; = h; for : = 0,1, and (4) is proved.
Assume that either f is an n2r-map, or f is a pt2r-map and E(Af) is an antichain.
Let g,90,91 € End(X) be r-maps such that g < f, Im(g;) N E(Af) # 0, and
99 = i, 99; = g for i = 0,1. For f' € [f], the maps f’g; are r-maps exactly
when f' | (Im(go) \ E(Af)) = g I (Im(go) \ E(Af)) and f" [ (Im(g1) \ E(Af)) =
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g | (Im(g1) \ E(Af)). Thus if Im(go) N E(Af) = Im(g1) N E(Af) then necessarily
f'90= f'g1.

Conversely, if Im(go) N E(Af) # Im(g1) N E(Af) then {u} = Im(go) N E(Af) #
Im(g1) N E(Af) = {v} and, by Lemmas 3.4 or 3.5, there exists an f’ € [f] such that
g9f" =g and f'(u) # f'(v). Then f’g; are r-maps and f'(u) = f'go(u) # f'g1(u) =
f'(v). This proves (5). O

Lemma 3.10. Let Cy, Cy € C(X) be such that Nuc(Cp) = Nuc(Cy). Fori =0,1,
let x; € C; be min-defective and y; € C; max-defective elements such that, for any
z € Mid(X) \ Def(X),

E(z) N [x:) # 0 # E(2) N (yi] only when E(2) N [2:) N (yi] # 0.

For i = 0,1, denote {u;} = Min(x;) and {v;} = Max(y;), and suppose that there
exists an r-map g with g(ug) = u1, g(vo) = v1 and such that

2 € (o) U (o]) \ Def(X) implies g(=) € [21) U (y1]:

Then there exists an h € End(X) with h(zg) = x1, h(yo) = y1 if and only if x5 € yo
orzi < Y-

Proof. By the hypothesis g(z;) = g(u;) = u; and ¢g(y;) = g(v;) = v1 fori =0, 1.
Furthermore, by Statement 2.1(6), we may assume that for any z € Mid(X)\Def(X),

g(2) € [z1) whenever E(2) N ([xg) U [z1)) # 0 and

9(2) € (1] whenever E(2) N ((yo] U (31]) # 0.

Theorem 1.7 applied to g, Fy = {xo, 21} and z; gives rise to a dr-map ¢’ € End(X)
such that g¢’ = g and ¢'(z9) = ¢'(x1) = z1. If o € yo or x1 < y;1 then the order
dual of Theorem 1.7, applied to ¢’, F1 = {yo,y1} and y; this time, yields a dp-map
h € End(X) with ¢’h = ¢’ and h(yo) = h(y1) = y1. Thus h(xg) = 21 and h(yo) = y1.
Conversely, if there exists an h € End(X) with h(zg) = x1 and h(yg) = y1 then
either z¢p € yo or x1 < y1 because h preserves order. O

Statement 3.11. Let X,Y € AR, and let ¢: End(X) — End(Y) be an R-
isomorphism. Then, for any g € End(X):

(1) g is a 2r-map if and only if ¥(g) is a 2r-map;

(2) g is a t2r-map if and only if (g) is a t2r-map;

(3) g is an n2r-map if and only if ¥(g) is an n2r-map;

(4) g is an e2r-map if and only if ¢(g) is an e2r-map;
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(5) g is an ndr-map if and only if ¢¥(g) is an ndr-map;
(6) if fo, f1 € End(X) are p2r-maps (or dr-maps, or ndr-maps) and h € End(X),
then h(Im(fo)) = Im(f1) if and only if ¢ (h)(Im(y(fo))) = Im(y(f1))-

Proof. The first five claims follow from the respective definitions, while (6) is
a consequence of Statements 2.3(11) and 3.9(3). O

Definition. Let X,Y € AR. An R-isomorphism ¢: End(X) — End(Y") is called
a C-isomorphism if for any f € End(X), the endomorphism ¢( f) is a c2r-map exactly
when f is a ¢2r-map.

Statement 3.12. Let X,Y € AR and let ¢: End(X) — End(Y) be an R-
isomorphism such that

for any Stone nucleus N with |Cy (X)| > 1, there exists a c2r-map fn €
End(X) with Afy C|JCn (X), such that ¥(fn) € End(Y) is a c¢2r-map;
for any Stone nucleus N with |Cy (Y)| > 1, there exists a c2r-map fy €
End(Y) with Afy C |JCn(Y), and such that ¥~ (fy) € End(X) is a c2r-
map.
Then, for any h € End(X),
(1) his a ¢2r-map if and only if ¢¥(h) is a ¢2r-map;
(2) h is a pt2r-map if and only if )(h) is a pt2r-map,

and hence 1 is a C-isomorphism.

Proof. If h € End(X) is a ¢2r-map, then there is a unique Stone nucleus N
for which Ah C |JCn(X). By the first hypothesis, we have a ¢2r-map fn with
Afn C JCn (X) for which ¢(fn) is a c2r-map. By Statement 3.9(4), there exist
f' € [fn] and W' € |h] such that A'f' = 1’ and f'h' = f'. From ¢ (f’) € [(fn)] it
follows that ¢(f’) is a ¢2r-map. By Lemma P.5(2), Im(¢(h’)) = Im(3(f’)), so that
(k') and hence also ¥(h) are c2r-maps. The converse in (1) follows by symmetry,
and (2) is a consequence of (1) and Statement 3.11(2). O

Statement 3.13. Let X, Y € AR and let ¢: End(X) — End(Y) be a C-
isomorphism. Let f € End(X) be a p2r-map such that either f is an n2r-map or
else both E(Af) and E(Ay(f)) are antichains. If gy and g1 are r-maps such that
Im(g;) N E(Af) # 0 and Im(¢(g;)) N E(AY(f)) # 0 for i = 0,1, then Im(go) N
Im(g1) N E(Af) # 0 if and only if Im((g0)) N Im(t(91)) N B(AG(F)) # 0.

Proof. If fis a p2r-map satisfying the hypothesis, then there exist an r-map
g < f and maps g, € [g;] such that glg = g, and gg} = g for i = 0,1, by Statement
2.1(4). But then the conclusion follows from Statement 3.9(5). O
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4. COLLECTIONS OF 2r-MAPS

This section investigates relations between 2r-maps, and combines p2r-maps into
suitable collections preserved by C-isomorphisms.

Definition. Let fy, fi be 2r-maps and let ¢ < fo, fi be an r-map. We say
that fo, f1 are independent over g if h = sup{fo, f1} exists and there are exactly
four distinct equivalence classes of r-maps below h and also exactly four distinct
equivalence classes of 2r-maps below h.

Following is a structural description of independence.

Lemma 4.1. Let g be an r-map and let fo, fi > g be 2r-maps. Then fy, f1 are
independent over g if and only if Afo N Af1 = 0.

If AfonAfy =0, then there is an idempotent h € End(X) with Im(fo)UIm(f;) =
Im(h), and hence h = sup{fo, f1}. If, in addition, Af; = {z;,y;} C Mid(X) for
1 =0,1 and {xo, 21} C Im(g), then we may assume that

h(t) = {fo(t) fort € X\ (fo  (E(x1)) N f1 1 (E(z1))),
fi(t)  forte fo ' (E(z1)) N fi H(B(21)).

Proof. We begin with the second claim. Assume that AfoNAf; = 0. If Afy or
A fi is a union of Stone nuclei then the claim follows from Lemma 1.8. By Lemma 3.1,
in the remaining case Af; = {z;,v;} C E(x;) € Mid(X) for ¢ = 0,1. If, say,
zo,x1 € Im(g), then Ext(zg) # Ext(z1) because g is an r-map and Afy NAf; = 0.
Set E = fy '(B(z1)) N f; Y(E(21)), and write

ht) {fl(t) forte E,
fo(t) forte X\ E.

From fo(E) = {z1} and f1(F) C E(z1) it follows that h € End(X) because fo, f1 €
End(X) have finite images. Since fo and fi are idempotents and f1(E) = Afy, the
dp-map h is idempotent and Im(h) = (Im(fo) \ {z1}) UAf1 = Im(fo) UIm(f1). This
completes the proof of the second statement.

Let g,9; < f; be r-maps such that g; ¢ [g] for ¢ = 0,1. For i = 0,1, write
Ji =Im(g)\Im(g;) and K; = Im(g;) \Im(g), and denote L = Im(g)NIm(go)NIm(g1).
Then either J; = K; are Stone nuclei, or J; and K; are non-defective points for
i=0,1.

We show that Afy N Af; = () implies that fy, fi > ¢ are independent over g.

The idempotent h defined in the first part of the proof satisfies Im(h) = Im(fo) U
Im(f1), and hence no Stone kernels other than Im(g), Im(go), Im(g1), and KoUK;UL
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are contained in Im(h). Similarly, no images of 2r-maps other than Im(fy), Im(f1)
and J; U KoUK UL =1Im(g;) U (Im(f1—;) \ Im(g)) with ¢ = 0,1 are contained in
Im(h). Therefore fo, f1 > g are independent over g.

To prove the converse, let fo, f1 > ¢ be independent 2r-maps with AfoNAf1 # 0.
Since Afo NAf1 = (Ko N K1) U (Jo N J1) and because Im(g) O Jo U Jp is a Stone
kernel of X, this is possible only when Jo N .J; # ), see Lemma 3.1.

Suppose that Jy # J;. Since g is an r-map, one of the sets Af;, say Afy, is the
union of two disjoint Stone nuclei while the other Af; = {xg,21} C E(x0) with a
non-defective o € Mid(X) and zg € Afy. By Lemma 3.1, (A fo\Im(g))NIm(f1) = 0,
and thus we may apply Lemma 1.8 to f1 to obtain an idempotent h € End(X) with
Im(h) = Im(fo) UIm(f1). But then only Im(g), Im(go) and Im(g1) are distinct Stone
kernels contained in Im(h), a contradiction.

Therefore Jy = Ji.

Suppose that Im(fy) and Im(f;) do not intersect the same components. Then,
by Lemma 3.1, Jy is a Stone nucleus and Ko N K; = (), and Lemma 1.8 implies
the existence of an idempotent & € End(X) with Im(h) = Im(fp) U Im(f1). But
then Im(h) contains only three distinct Stone kernels, namely Im(g), Im(go) and
Im(g1). This contradiction shows that Im(fp) and Im(f;) must intersect the same
components.

Since fo, f1 > g are independent over g, a supremum h = sup{ fo, f1} exists. Since
there are only four distinct equivalence classes of r-maps below h, the image of h
intersects only finitely many components. Thus, by Statement 1.6, Im(h) and Im(fo)
intersect the same components.

Since Im(fp) U Im(f1) contains at least three distinct Stone kernels, and Im(h)
contains exactly four, from Statement 2.1(6) and from the fact that Im(h) and Im(fo)
intersect the same components it follows that Im(h) \ (Im(fo) U Im(f1) U Def(X))
has at most one element. We claim that

(m) if z € Im(h)\ (Im(fo) UIm(f;)UDef (X)), then no order preserving idempotent
f: E(z)NIm(h) — E(z) NIm(h) satisfies Im(f) = (Im(fo) UIm(f1)) N E(z).
Indeed, if f is such a map, then for any r-map ¢’ of Im(h), the mapping

f(n(t))  for t € =1 (E(2)),
k(t) = < h(t) for t € h=1(Mid(X) \ (Def(X) U E(z))),
g'(h(t)) fort € h~1(Ext(X)UDef(X))

satisfies Im(k) = Im(fo) UIm(f1). Also, k¥ € End(X) is an idempotent because ¢’
maps the clopen set h~!(Ext(X) UDef(X)) into itself. Therefore fo, fi < k < h =
sup{ fo, f1}—a contradiction.
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Suppose that Jy = Jp is a Stone nucleus. Since Im(h) contains exactly four distinct
Stone kernels, from Statement 2.1(6) it follows that Ko \ K1 = {uo} and K; \ Ko =
{u1} are singletons, u1 € E(up), and Im(h) \ (Im(fo) UIm(f1) UDef(X)) = {z} is a
singleton such that z € Mid(K (Jp))\Def(X) or z € E(uop). The first case contradicts
(m) because there certainly is an idempotent order preserving f: E(z) NIm(h) —
E(z) NIm(h) with Im(f) = Im(g) N E(z) = (Im(fo) UIm(f1)) N E(z).

Thus z € E(ug). By Statement 2.1(6) and Corollary 3.3, there exists a ¢2r-map
fo with Im(f2) = (Im(fo) \ {wo}) U {z}. Since w1,z € E(up) and because there
are at most four 2r-maps below h, Lemma 3.4 implies that the subposet E(ug) N
Im(h) = {uo, u1, 2z} contains at most one comparable pair. But then there exists an
idempotent order preserving mapping of E(ug) N Im(h) into itself whose image is
{uo,u1}, in contradiction to (m).

Now let Jo = J; = {z} be a singleton. Then K; = {y;} are singletons and
y; € E(x) for i = 0,1. Since Im(h) contains exactly four distinct Stone kernels, the
set Im(h) N E(x) = {x,yo,y1, 2} = T must have four elements. By (m), there is no
idempotent f: T — T with Im(f) = {z, yo, y1 }, and this implies that z is comparable
to at least two other, incomparable members of T', and z is extremal in E(z). Since
fi(E(z)) = Af; = {z,y;} for i =0, 1, if z and y; are in the same component of E(x),
then y; is comparable to x. It follows that yg, y1 are incomparable and that {yo, 2},
{y1, 2z} are comparable pairs. So, if z is comparable to z, then T has five comparable
pairs, and hence there are five non-equivalent n2r-maps whose images are contained
in Im(h). Thus z is not comparable to x and two cases arise. First,  is comparable
to both yo and y;, in which case the map which sends z to x and leaves all other
elements of T fixed is an order preserving idempotent—a contradiction with (m). In
the second case, x is incomparable to all other members of T', and there exist five
2r-maps whose images intersect Im(h) N E(z) in sets {y;, 2}, {y:, 2} with ¢ = 0,1 and
{z, z}.

Therefore Afo NAf; = () for any 2r-maps fo, f1 independent over g. O

Corollary 4.2. For every r-map g of X € AR there are only finitely many
2r-maps f; > g that are pairwise independent over g.

Proof. The claim follows from Lemma 4.1 and the finiteness of Im(g). (]

Lemma 4.3. Let {fo, f1,...fn} be a set of pairwise independent n2r-maps or
pt2r-maps over an r-map g € End(X). Then there exists an h = sup{ fo, f1,--., fn}

with Im(h) = U{Im(f;) | ¢ = 0,1,...,n}. Furthermore, the supremum h may be
selected so that h | E(x;) = f; | E(x;) for any i =0,1,...,n and x; € Af;.

Proof. We proceed by induction on n. For n = 1, the statement follows from
Lemma 4.1. Assume that it is true for n — 1. By the induction hypothesis, there
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exists an b’ = sup{ fo, f1, ..., fn—1} with Im(h’) = U{Im(f;) |+ =0,1,...,n—1} and
W | E(x;)=f; | E(x;) for all z; € Af; with i =0,...,n — 1. Denote Af, = {z,y}.
Then, because fo,..., f, are pairwise independent over g, the set Im(h') N E(z) is a
singleton and for any z € Af; with i = 0,...,n — 1 we have E(z) N E(z) = . Let

E = (1) Y(E(x))N f,;1(E(z)). Define

ht) = { W(t) forte X\FE,
fa(t) forteE.

Since ' (E), fn(F) C E(z) and because f,,h’ € End(X) are idempotents with finite
images, we deduce that h € End(X) is idempotent. From f,(E) = Af, it follows
that Im(h) = (Im(R') \ E(z)) UAS, = Im(h) UIm(f,) = U{Im(f;) | i = 0,1,...n}.
Thus h = sup{ fo, f1,..., fn}. Since E(z) C E, we have h | E(z) = f, [ E(z). O

We say that r-maps g and ¢’ are close if Im(g) and Im(g’) intersect the same
components of X.

Lemma 4.4. Let fo, f1 € End(X) be idempotent. Then:

(1) Two r-maps fo, f1 are close if and only if ff1 < ffo for every c2r-map f
such that f fy is idempotent and, vice versa, ffo < ffi1 for every c2r-map f
for which f f; is idempotent.

(2) If f; > g; for some r-map g; for i = 0,1, then Im(fy) and Im(f1) intersect the
same components of X if and only if for i = 0,1 and for any r-map r; < f;
there is an r-map r1_; < fi1—; close to ;.

Proof. Let fo, f1 be r-maps. If Im(fy), Im(f1) do not intersect the same
components, then there are distinct Cp,Cy € C(X) with Nuc(Cp) = Nuc(Cy) and
C; N (Im(f;) \ Im(f1—4)) # 0 for ¢« = 0,1. By Corollary 3.3, there is a ¢2r-map
f > fowith Af C CoUC1. Then ffy = fo is idempotent and f f1 # f fof f1 because
Cy N Im(f f1) # 0.

Conversely, suppose that Im(fy) and Im(f;) intersect the same components of
X, and let f be a ¢2r-map. Then f(E(x)) is a singleton, and f(E(x) NIm(fo)) =
f(E(x) NIm(f1)) for every x € Mid(X) \ Def(X) implies that Im(f fo) = Im(f f1).
Therefore (1) holds.

Since g; < f; for some r-map g; € End(X) for i = 0,1, from Statement 2.1(9) it
follows that a component C' € C(X) intersects Im(f;) if and only if there exists an
r-map r; < f; with C' N Im(r;) # (. The remainder follows from the definition of
closeness of r-maps. O

Definition. = We say that an r-map ¢ is nice whenever

(nl) every = € Im(g) N Mid(X) is extremal in F(x),
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(n2) if x € Im(g) "Mid(X) and E(x) is not an antichain, then z is comparable to
some z € E(z) \ {z}.

A finite non-empty collection .# of p2r-maps independent over a nice r-map g is
proper if it satisfies these three conditions:

(p1) if z € Im(g) " Mid(X) and E(x) # {z} is not an antichain, then x € Af for
some e2r-map [ € .%,

(p2) if z € Im(g) "Mid(X) and E(z) # {z} is an antichain, then x € Af for some
pt2r-map [ € .F,

(p3) each member of . is of the type described in (pl) or (p2).

Notation. For a given r-map g, let e(g) denote the maximal number of mutu-
ally independent e2r-maps over g, let n(g) denote the maximal number of mutually
independent n2r-maps over g, and let p(g) be the maximal number of all mutually
independent p2r-maps over g. Then p(g) = n(g) > e(g) = 0, and these numbers are
finite because of Corollary 4.2.

Lemma 4.5. For any nice r-map ¢, there exists a proper collection .% of p2r-
maps over g.

Secondly, a collection .% of independent e2r- or pt2r-maps over a nice r-map ¢ is
proper if and only if

(1) Z contains e(g) distinct e2r-maps, and
(2) Z contains p(g) — e(g) distinct pt2r-maps.

Proof. Let gbe anicer-map, and let G denote the set of all z € Im(g)NMid(X)
with E(z) # {z}.

Let x € G. If E(x) is not an antichain, then by (n2) there is, say, some z € E(x)
comparable with z, and by (nl) and Lemma 3.7 there exists an e2r-map f, > ¢
with « € Af,. If E(z) is an antichain, then by Lemma 3.5 there exists a pt2r-map
fo > g with x € Af C E(z). Any collection # = {f, | # € G} of such p2r-maps is
independent and satisfies (p1)-(p3).

It is straightforward to verify that a collection .% of independent p2r-maps over a
nice r-map g is proper exactly when it satisfies (1) and (2). O

Notation. For r-maps g,¢' € End(X), let V(¢',g) consist of all »-maps h €
End(X) close to ¢, and such that Im(h) N C = Im(g) N C for any C € C(X) with
Im(g) NIm(g’) NC # 0.

Lemma 4.6. There exists an r-map g € End(X) such that e(g) > n(g') for
every r-map ¢’ € End(X). Any such g is nice.
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Secondly, let g € End(X) be a nice r-map and let ¢’ € End(X) be an r-map. Then
there exists an r-map go € V(¢',g) such that e(go) > n(h) for every h € V(g',g).
Any such gg is nice.

Proof. Both statements follow from the definition of a nice r-map, Statement
2.1(6) and Lemma 3.7. U

Lemma 4.7. Let fy, f1 € End(X) be either pt2r-maps or n2r-maps. Then:

(1) if there are f§ € [fo], fi € [f1] and an r-map g such that gf{f] = f§f1 or
9fifo = fifo, then Afo # Afi;

(2) if ofLft # fofi and gfifs # FLf} for every r-map g and for all f} € [fo],
f1 € [f1], then Afy # Afy only when fy and fi are pt2r-maps with Afy U
Af, C E(x) for some E(x) which is not an antichain.

Proof. If Afo = Af then Afy C Im(fif1) NIm(f]f}) for every f} € [fo] and
fi € [fil. But Afo  Im(g) for any r-map g, so that gfofi # fofi and gfi fo # fifo-
This proves (1).

To prove (2), assume that Afy # Af;. Then there exist z; € Mid(X) such that
x; € Afi \ Afi_; for i = 0,1. If E(xg) # E(x1), then f/(Afi_;) is a singleton for
some f/ € [fi], ¢ = 0,1, and hence gf/fi_, = f/fi_; for some r-map g and any
fi_1 € [f1—i]. Hence we may assume that AfoUAf; C E(x). If f; is an n2r-map or
E(z) is an antichain then, by Lemmas 3.4 or 3.5, there exists an f/ € End(X) such
that f/(Afi—;) is a singleton, so that gf/fi_, = f{fi_,; for some r-map g and any
fi_; € [fi=i]- Thus both f; must be pt2r-maps and E(x) cannot be an antichain. [0

Notation.  Given an idempotent h € End(X) with finite Im(h) and a non-
defective x € Im(h), we define a map h, by

hy (t) =

x for t € h=Y(E(z)),
h(t) forte X\ h™1(E(x)).

Then h, is an idempotent whose image is finite, and the fineteness of Im(h) implies
that h, € End(X).

Let .7 be a proper collection of p2r-maps over a nice r-map g € End(X) and let
f €. Denote Af ={x,y} and h = sup.%. Let S(F,g, f) denote the family of all
those idempotents k& € End(X) for which

(s1) h(C) C C implies k(C) C C for every C € C(X);

(s2) Wkh € [hy] U [hy] for every B/ € [h].
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Lemma 4.8. Let .% be a proper collection of p2r-maps over a nice r-map g €
End(X) and let f € &#. Then for every k € S(Z,g, f) there exists an r-map
k' € End(X) with k' < k.

Proof. Since any f' € .Z is either an n2r-map or a pt2r-map, from Lemma
4.3 it follows that h = sup.Z has the image Im(h) = J{Im(f’) | f' € #}, so that
the components C € C(X) intersecting Im(h) form a minimal Stone plot. Since
k € S(F#,g, f) is idempotent, from (C) it follows that Im(k) contains a Stone kernel.
Statement 2.1(1) then completes the proof. O

The claim below follows immediately.

Statement 4.9. Let X,Y € AR and let ¢: End(X) — End(Y) be an R-
isomorphism. Then:

(1) if fo, f1 € End(X) are 2r-maps and fo, f1 > g for an r-map g, then fo, f1 are
independent over g if and only if ¥(fo), ¥(f1) are independent over 1(g);
(2) e(¥(g)) = elg), n(¢(g)) = n(g) for any r-map g € End(X).

If v is also a C-isomorphism, then

(3) p(¥(g)) = plg) for any r-map g € End(X);

(4) if g € End(X) and 9(g) € End(Y) are nice r-maps, then a collection .# of
p2r-maps is a proper collection over g if and only if Y(F) ={¥(f) | f € F}
is a proper collection over ¥(g);

(5) if g € End(X) and ¢(g) € End(Y') are nice r-maps, then

P(S(F,9, 1) = SW(F), ¥(9), ¥(f))

for every proper collection % of p2r-maps over g and for every f € F;

(6) if f,g € End(X) are r-maps, then f and g are close if and only if ¥(f) and
¥ (g) are close;

(7) if fo, f1 € End(X) are idempotents such that f; > g; for some r-maps go, g1 €
End(X), then Im(fy) and Im( f,) intersect the same components of X if and
only if Im(¢(fo)) and Im(¢(f1)) intersect the same components of Y';

(8) if f € End(X) is either a pt2r-map such that E(Af) is an antichain or an
n2r-map then, for any p2r-map f’' € End(X), we have Af = Af’ if and only
if Ap(f) = Ap(f).

Theorem 4.10. Let .% be a proper collection of p2r-maps over a nice r-map ¢.
Let f € #, and let Af = {z,y} with x € Im(g). Denote h = sup.%. Then

(1) k(2) = z for every z € Im(h) \ {z,y} and every k € S(Z,g, f),
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(2) k(z) =k(y) € E(x) for every k € S(F, g, f),

(3) for every z € E(x) there exists a k € S(#,g, f) with k(x) = z,

(4) for ky,ky € S(F,g, f), we have ky(z) = ko(x) if and only if k1g = kag.

Thus the map ny: {kg | k € S(F,9,f)} — E(z) given by n¢(kg) = kg(x) is a
bijection.

Proof. Since h'kh € [hy] U [hy] by (s2), the map h'kh is idempotent for any
ke S(Z,9,f), and Im(h'kh) = Im(h) \ {y} or Im(h'kh) = Im(h) \ {z} for any
h’ € [h]. Therefore

(a) W'k(t) =t for all t € Im(h) \ {z,y} and any A’ € [h].

Let C € C(X) be such that g(C') C C. Then h(C) C C.

First, for any ¢ € Im(h) N Mid(C) with E(c) # {c}, we have Im(h) N E(c) = Af’
for some f' € .7 because of (pl), (p2) and Lemma 4.3. Since members of .7 are
independent over the r-map g, the 2r-map f' € % with E(c) NIm(h) = Af' is
uniquely determined.

Next we show that k(c) = ¢ for every ¢ € (Im(h)NC)\{x,y}. By (a), for every such
¢ and for all b’ € [h] we already have h'k(c) = ¢. Thus k(c) = ¢ for all ¢ € Ext(C)
and also for all ¢ € Mid(C) with E(c) = {c}. If c € Mid(Im(h) N C) and E(c) # {c},
then, as shown above, Im(h) N E(c) = Af' = {u,v} for a unique f' € .#. But
then f' # f since ¢ ¢ {z,y} = Af and because .# consists of independent 2r-maps.
Since k is the identity on Ext(C), we must have k(u), k(v) € E(c). If E(c) is not an
antichain then v and v are comparable extremal elements of E(c) because of (nl),
(n2) and (p2). If k(u) # u then, by Lemma 3.4, there is a 2r-map f” € [f'] such
that f”"{k(u), k(v)} = {v}. If E(c) is an antichain, then such an f exists because of
Lemma 3.5. But then, in either case, Lemma 4.3 implies the existence of an h’ € [h]
with h'{k(u), k(v)} = {v} C Af’. Whence hkh ¢ [hs] U [hy]—a contradiction with
(s2). This shows that k(u) = u and, symmetrically, k(v) = v. Whence k(c) = ¢ for
every ¢ € (Im(h) N C) \ {z,y}, and the proof of (1) is complete.

To prove (2), suppose that k(z) # k(y). Then by Lemmas 3.4 and 3.5, there exists
an f € [f] with f(k(z)) # f(k(y)) and, by Lemma 4.3, there exists an h’ € [h] with
Wk(z) # h'k(y)—a contradiction because h'kh ¢ [h;] U [hy] again. This proves (2).

Let z € E(x). Define

) — h(u) forue X\ h=Haz,y},
(1) z for u e h=z,y}.

Then k € S(%,g, f), and this proves (3).

To prove (4), we note that, by (1), k1(z) = z = ka(2) for all z € Im(h) \ {=z,y},
and hence for all z € Im(g) \ {z}. Since g(z) = z, we have k1g = kog if and only if
krg(x) = kag(x).
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From the above it follows that 7y is a bijection. O

Statement 4.11. Let X,Y € AR, and let ¢: End(X) — End(Y) be a C-
isomorphism. Let g € End(X) and v(g) € End(Y') be nice r-maps, and let .# be a
proper collection over g. For any f € & and all z € E(Af), write

vi(2) = ny(p) (0 (2)))-

Then vy: E(Af) — E(Ay(f)) is a bijection such that

(1) vy(z) € Im(¢0(g)) for the element = € Im(g) NAf;
(2) elementsu,v € E(Af) are comparable if and only if vy (u), vs(v) € E(AY(f))
are comparable.

Proof. By Theorem 4.10 and Statement 4.9(5), the map v is a correctly defined
bijection of E(Af) onto E(Av(f)). Since for any k € S(Z, g, f) with k(Af) = {z}
we have kg = g, (1) is proved.

By Lemma 3.4, {u,v} C E(Af) is a comparable pair if and only if there exists
an n2r-map f’ € End(X) with f’ > n;l(u),nfl(v) because kg is an r-map for any
ke S(Z,g,f). From Statement 3.11(3) it follows that {u,v} is a comparable pair
if and only if {vs(u),vs(v)} is a comparable pair. O

5. 3r-MAPS AND BLOCKS

In this section, we define suitable maximal collections consisting of ¢2r-maps or
pt2r-maps, and investigate their relation and preservation by monoid isomorphisms.
To make such collections coherent, we need some additional concepts.

Definition.  We say that an idempotent f € End(X) is a 3r-map if there are
exactly three distinct classes of r-maps g; < f for i = 0,1, 2, exactly three distinct
classes of t2r-maps f; < f for i = 0,1,2, and f = sup{go, 91,92}-

Lemma 5.1. Let f € End(X) be a 3r-map. Let go,g1,92 < f be pairwise
non-equivalent r-maps, let fy, f1, fo < f be pairwise non-equivalent t2r-maps, and
let gi,gi+1 < fi+o—with the addition modulo 3. Then exactly one of the following
three cases occurs:

(1) fo, f1, f2 are c2r-maps, and there are distinct Cy,C1,Cy € C(X) with iso-
morphic Stone nuclei satisfying

Im(g;) \ Im(gi+1) = Im(g;) \ Im(gi12) C C; fori=0,1,2;
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(2) fo, f1,f2 are pt2r-maps, and there is a component C' and distinct non-
defective xg,x1,x2 € Mid(C) such that {xg,z1, 22} C FE(xo) Is an antichain
and

Im(g;) \ Im(gi+1) = Im(g;) \ Im(gi42) = {a;} fori =0,1,2;

(3) exactly one 2r-map, say fo, from {fo, f1, fo} is a pt2r-map, and the other
two are c2r-maps, and there are distinct components Cy,C; € C(X) with
isomorphic Stone nuclei and distinct incomparable non-defective x1,x2 €
Mid(C1) with o € E(x1) such that

Im(go) \ Im(g1) = Im(go) \ Im(g2) C Co,

Im(g1) \ Im(go), Im(g2) \ Im(go) C C1,

Im(g;) \ Im(gs—;) = {xi} fori=1,2.
Proof. First, by Lemma 3.1, Im(f;) = Im(g;+1) UIm(gi+2) and hence

(c1) Afi=(Afix1 \Afir2) U(Afiz2 \ Afiy1) for i =0,1,2.

Furthermore, A f; NAf; # 0 for distinct ¢, j = 0, 1,2, for otherwise there would exist
four distinct Stone kernels contained in sup{ f;, f;} < f, by Lemma 4.1.

Suppose that fo, f1, fo are c2r-maps. Since Afy N Afi # (), by Lemma 3.2 and
(c1) there exist three distinct components Cy, C1, Co with isomorphic Stone nuclei
satisfying Af; C Ci41 UCyi4o for i = 0,1,2. This describes the case under (1).

Suppose that fo, f1, f2 are pt2r-maps. Since Afo N Afi # (), by Lemma 3.2 and
(c1) there exist three distinct points xg, z1, 2 such that {xg, 21,22} C E(xg) is an
antichain and Af; = {2;11,xi42} for i = 0,1,2, and this describes the case under
(2).

Suppose that fy is a pt2r-map and f; is a c2r-map. Since Afy N Af; # 0, from
Lemma 3.2 and (cl) it follows that f5 is a ¢2r-map and the description given in (3)
occurs. O

Definition. A 3r-map f € End(X) is called

ct3r-map if it satisfies the condition (1) in Lemma 5.1;
pt3r-map if it satisfies the condition (2) in Lemma 5.1;
m3r-map if it satisfies the condition (3) in Lemma 5.1.

We say that a 3r-map is a t3r-map if it is either a ct3r-map or a pt3r-map.
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Lemma 5.2. Let fy € End(X) be at2r-map and let g < fo be an r-map. Then for
every component C € C(X) with Nuc(C) = Nuc(K (A fonIm(g))) and CNIm(fo) =0
and for every dp-subspace N C C' isomorphic to Nuc(C) there exists a 3r-map
f € End(X) with Im(f) = Im(fo) UN.

Consequently, if g € End(X) is an r-map and C1,Cy € C(X) are distinct com-
ponents such that Nuc(C7) = Nuc(Cs) and C1 NIm(g) = 0 = C> NIm(g), then for
any dp-subspaces N; C C; isomorphic to Nuc(C;) for i = 1,2 there exists a ct3r-map
f € End(X) with Im(f) = Im(g) U N1 U Ns.

If f € End(X) is a 3r-map and gg, 91,92 < f are non-equivalent r-maps and
fo, f1, fo < f are non-equivalent t2r-maps, then Im(f) = (J{Im(g;) | i = 0,1,2} =
Im(f;) UIm(fj41) for each j =0,1,2.

Proof. To obtain the first statement, we apply Lemma 1.8 to fy, the component
C' and its dp-subspace N. The second statement follows from Corollary 3.3 and the
first statement of this Lemma.

If f € End(X) is a ct3r-map or an m3r-map, then the third statement follows
from the first statement of this Lemma and Lemma 5.1. It remains to consider
a pt3r-map f € End(X). Since f = sup{go, 91,92} and Im(f) contains exactly
three distinct Stone kernels, namely Im(gg), Im(g1), and Im(g2), we conclude from
Statement 2.1(6) and 2.1(9) that Im(f) \ Def(X) = Im(go) UIm(g1) U Im(g2). By
Statement 2.1(1), there exists an r-map ¢’ € End(Im(f)). Define a mapping f’ by
setting, for u € X,

Flu) = {f(U) if f(u) ¢ Def(X),
g (f(w)) if f(u) € Def(X).

Clearly Im(f’) = Im(go) UIm(g1) UIm(gs). Since f and ¢’ are idempotent dp-maps,
we conclude that f’ € End(X) is idempotent. From f = sup{go,g1,g2} it then
follows that Im(f) = Im(f”). O

Lemma 5.3. Let f be a 3r-map and let gg, 91,92 < f be non-equivalent r-maps.
Then
(1) f is a t3r-map if and only if for some g € [go] there exists an h € End(X)
such that hg € [g1], h?g € [g2] and h®g = g;
(2) if f is an m3r-map then fo = sup{gi1, g2} is a pt2r-map if and only if there
exists an h € End(X) such that for some g € [g1] we have hg € [g2], h?g = g
and hgy = go-

Proof. Let f > go,91,92 be a t3r-map. Then, by Statement 2.1(4), the three
r-maps g; can be chosen so that g;g; = g; for ¢,j = 0,1,2. Write Im(g;) \ Im(gi11) =
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Im(g;) \ Im(gi42) = M; for i =0,1,2, and E = f~1 (Mo U M; U Ms), and set

B8 — f@) fort ¢ E,
) = gir1f(t) forte f7H(M;), i =0,1,2.

The image of f € End(X) is finite, and hence h is a dp-map. Clearly hg; = g;41 for
i=0,1,2.

To prove the converse in (1), assume that f is not a t3r-map. Then, by Lemma 5.1,
there are components Cyp, Cy with isomorphic Stone nuclei so that (Im(go) \Im(g;))N
Co # 0 and (Im(g;)\Im(go))NC1 # 0 for j = 1,2. If for some g € [go] and h € End(X)
we have hg € [g1], h?g € [go] and h®g = g, then h(Im(g;)) = Im(g;41) for i = 0,1,2
and hence h(Cy) C Cy and simultaneously h(Cy) C Cop—a contradiction. This
completes the proof of (1).

To prove (2), let f > go, 91, g2 be non-equivalent r-maps such that fo = sup{gi1, g2}
is a pt2r-map and g;g3—; = g; for i = 1,2. Denote Afy = {z1,22}, and set

f(t) fort¢ f~Ha, 2o},

h(t) =< 1 for t € f~1{x2},

To for t € f~ a1}
Then h € End(X) because Im(f) is finite, o € F(x1), and {x1, 22} is an antichain,
while hgs = g1 and hg; = go follow from gog1 = g2 and g1g2 = g1. Clearly hgy = go-
Conversely, if there exists an h € End(X) with hgo = go, hg € [g2] and h?g = g for
some g € [g1], then h(C) C C for any component C intersecting Im(go). If go and g1
are close, then go and go are close because h(Im(g;1)) = Im(g2), and this contradicts
Lemma 5.1(3). Thus there exists a component C which intersects Im(g;) but not
Im(go). From Lemma 5.1(3) and h(Im(g;)) = Im(gs—;) for ¢ = 1,2 it follows that ¢y
and go are close. But then fo = sup{g1, g2} is a pt2r-map, by Lemma 3.2. O

The observation below now follows directly from the respective definitions.

Lemma 5.4. For X,Y € AR let ¢: End(X) — End(Y) be an R-isomorphism.
Then, for every f € End(X),

(1) f is a 3r-map if and only if ¢(f) is a 3r-map;

(2) f is a t3r-map if and only if ¢(f) is a t3r-map;
(3) f is an m3r-map if and only if (f) is an m3r-map;
(4) if f is an m3r-map and g1,g92 < f are non-equivalent r-maps, then fo =

sup{g1, g2} is a pt2r-map if and only if ¢(fo) is a pt2r-map.
If ¢ is also a C-isomorphism, then

(5) f is a ct3r-map if and only if ¢(f) is a ct3r-map;
(6) f is a pt3r-map if and only if ¢(f) is a pt3r-map.
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Definition. A set G of equivalence classes of r-maps is called a block if it is
maximal with respect to these two properties:

(d1) for every pair [go] # [g1] of classes from G, there is a t2r-map f > go, g1,
(d2) for every triple {[g;] | i = 0,1, 2} of distinct members of G, there is a t3r-map

k> 90,91, 92-

Lemma 5.5. Let G be a block. Then

(1) Im(go) \ Im(g1) = Im(go) \ Im(g2) and Im(go) N Im(g1) = Im(go) N Im(g2) =
Im(g1) NIm(g2) whenever [gol, [g1], [92] € G are pairwise distinct;

(2) Im(go) \ Im(g1) = Im(g2) \ Im(gs) for any quadruple [go], [g1],[92], [95] € G
with [go] # [91] and [ga2] # [g3].

Proof. The first statement follows from the fact that Im(go)\Im(g1) = Im(go)\
Im(g2) and Im(go) N Im(g1) = Im(go) N Im(g2) = Im(g1) N Im(gz) for any t3r-map
f and pairwise non-equivalent r-maps g, 91,92 < f, see Lemma 5.1. The second
statement follows from the first because Im(gg) \ Im(g1) = Im(g1) \ Im(go) for any
t2r-map f > go, g1 and pairwise non-equivalent r-maps gg, g1 — see Lemma 3.2. [

Lemma 5.5 implies that the mapping 3 below is correctly defined.

Notation. For any block G and any [g] € G define 5(G, [g]) = Im(g) \ Im(g’)
for any [g'] € G\ {[g]}-

Lemma 5.6. If G is a block, then exactly one of these two cases occurs:

(1) there is a Stone nucleus N such that for any [g] € G, the dp-subspace
B(G,[g]) € X is isomorphic to N = Nuc(K(8(G,[g]))) and the mapping
B+ G — Cn(X) given by 8'([9]) = K(B(G, [g])) for all [¢] € G is a bijection
of G onto Cn (X);

(2) there is a non-defective x € Mid(X) such that the mapping 3(G, —) maps G
injectively into E(z) and {8(G,[g]) | [9] € G} is an antichain.

Suppose that N is a Stone nucleus with |Cy (X)| > 1. For every C € Cy(X),
let No C C be an arbitrarily selected dp-subspace isomorphic to Nuc(C) = N.
Then for any Stone kernel S of X and for every C' € Cy (X), there is an r-map
gc € End(X) with Im(gc) = (S\ (U{D | D € Cn(X)})) U N¢c. The collection
G = {gc | C € Cn(X)} of these r-maps is a block, and (G, [gc]) = N¢ for all
CeCy (X)

Proof. If (2) fails to hold then Lemmas 5.1 and 5.5 imply that there ex-
ists a Stone nucleus N such that (G, [g]) is a dp-subspace isomorphic to N =
Nue(K(8(G, g]))) for any [g] € G, and K(3(G,[go])) # K(B(G,[g1])) whenever
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[g90],[g1] € G are distinct. Corollary 3.3, Lemma 5.2 and the maximality of a block
imply that (1) holds.

Since the subspace S¢ = (S\ (U{D | D € Cy(X)})) U N¢ is a Stone kernel
for any C' € Cy (X), from Statement 2.1(1) it follows that there exists an r-map
gc € End(X) with Im(gc) = S¢. By Corollary 3.3 and Lemma 5.2, the collection G
satisfies (d1) and (d2) from the definition of a block, and Lemmas 3.2 and 5.1 imply
the maximality of G. Thus G is a block. The remainder is clear. O

Definition. Any block G satisfying statement (1) in Lemma 5.6 is called a
component block. We say that a component block G corresponds to a Stone nucleus
N if (G, [g]) & N for some [¢g] € G. If B(G,[g]) is a point in Mid(X) for some
l[g] € G, we call G a point block.

Lemma 5.7. Let Gy, Gy be blocks such that [g] € Gy NGy . Then the conditions
(1), (2) and (3) below are mutually equivalent, and the same is true also for the
conditions (4), (5), and (6).

(1) Fori=0,1, there exist classes [¢g;] € G; \ {[g]} such that t2r-maps f; > g, ¢;
are independent over g,

(2) fori=0,1 and arbitrary classes [g;] € G; \ {[g]}, any two t2r-maps f; > g, ¢:
are independent over g,

(3) (Im(g) \ Tm(g0)) N (Im(g) \ Tm(1)) = 0 for any [g;] € G; \ {[g]} with i = 0,1.

(4) For i = 0,1, there exist [g;] € G; with an m3r-map k > g, go, g1 such that
ko = sup{g, g1} is a pt2r-map;

(5) fori=0,1 and arbitrary [g;] € G; \{[g]}, there exist an m3r-map k > ¢, go, g1
such that ko = sup{g, g1} is a pt2r-map;

(6) for any [g;] € G; \ {[g]} withi=0,1, (Im(g) \ Im(g1)) is a singleton which is
a non-defective point in the Stone nucleus (Im(g) \ Im(go)).

Proof. According to Lemma 4.1, (1) = (3) and, by Lemmas 5.5 and 4.1,
(3) = (2). The implication (2) = (1) is clear.
From Lemmas 5.1, 5.2, 5.3(2) and 5.5 we obtain (4) = (6) = (5). The impli-
cation (5) = (4) is obvious. O
Definition. Blocks Gy and Gy with [g] € Gy N Gy are called
independent over g if (Im(g) \ Im(go)) N (Im(g) \ Im(g1)) = 0 for any [g;] €
mized over g if (Tm(g) \ Tm(go)) N (Tm(g) \ Tm(g1)) # 0 and Tm(g) \ Tm(go) #

Im(g) \ Im(g1) for any [g;] € G; \ {[g]} withi=0,1,
similar over g if Im(g) \ Im(go) = Im(g) \ Im(g;) for any [g;] € G; \ {[g]} with

i=0,1.
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Thus each of the first three conditions of Lemma 5.7 characterizes independent
blocks, and each of its last three conditions characterizes blocks which are mixed.

Definition. Let g be an -map, and let T be a collection of blocks G such that
[g] € G. If T has the following three properties:

(el) any two distinct blocks Gy, G; € T are independent over g,

(e2) if G € T and if Gy > [g] is a block such that G and G; are mixed, then G is
a component block,

(e3) T is a maximal collection satisfying (el) and (e2),

then we say that T is a representing collection over g.

Lemma 5.8. If T is a representing collection over an r-map g € End(X) then, for
every Stone nucleus N with |Cy (X)| > 1, there exists a block G € T corresponding
to N.

Any collection T’ of component blocks G > [g] independent over an r-map g €
End(X) can be extended to a representing collection T over g.

Any representing collection T over an r-map g € End(X) is finite—in fact, |T| <
|C(S)| + | Im(g) \ Ext(X)|, where S is a Stone kernel of X .

If T is a representing collection over an r-map g € End(X) and if a block G' is
similar to some block G € T over g, then T' = (T \ {G})U{G'} is also a representing
collection over g.

Proof. Let T be a representing collection over g, and let N be a Stone nucleus
with |Cy (X)| > 1. By the second statement of Lemma 5.6, there exists a block
Gn 3 [g] corresponding to N because g is an r-map. Since T is a representing
collection, it must contain a block Gy such that Gy and Gy are not independent.
Since Gy is a component block we conclude, by Lemma 5.7 and (e2) in the definition
of a representing collection, that Gy and Gy cannot be mixed. Thus they are similar,
and hence Gy corresponds to N.

For a given r-map g, let T’ be a collection of independent component blocks
containing [g]. Then T’ satisfies (el) and (e2) in the definition of a representing
collection. Consider the set .7 of all collections T 2 T’ of blocks containing [g] that
satisfy (el) and (e2) from the definition of a representing collection. By Statement
2.1(1), Im(g) is finite and hence, by Lemma 5.7, all inclusion-ordered chains in ¢
are finite, so that .# has a maximal element T containing T’. Any such T is a
representing collection over g.

The third statement follows from the fact that blocks in T are independent over g.

The fourth statement follows from the definition. O

The claim below concerning component blocks follows from the definition of sim-
ilarity and Lemma 3.2.
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Corollary 5.9. Let Gy and G; be blocks with [g] € Gy N Gy .

(1) If Gy and Gy are similar then Gy is a component block if and only if G, is a
component block.

(2) Let G be a component block and [go] € G. For any [g] € G\ {[g0]}, let
hy € End(X) be an r-map such that Im(hy) N Im(go) = Im(g) NIm(go), and
Im(hg) N C # 0 exactly when Im(g) N C # @ for any component C' € C(X).
Set hg, = hg. Then G' = {[hy] | [g] € G} is a component block similar to G
over g.

Following is a summary of preservation properties of R-isomorphisms.

Statement 5.10. Let X,Y € AR, and let ¢: End(X) — End(Y) be an R-
isomorphism. Then a collection G of equivalence classes of r-maps is a block in X if
and only if its image ¥(G) = {[¢(9)] | [¢] € G} is a block in Y.

If Gy and Gy are blocks in X with {[g]} = Go NGy then

(1) Gy and Gy are independent in X if and only if 1(Gy) and ¥(G1) are inde-
pendent in Y;

(2) Gy and G; are mixed in X if and only if ¥(Gy) and (Gy) are mixed in Y;

(3) Gy and Gy are similar in X if and only if 1)(Gy) and ¢(Gy ) are similar in Y';

(4) if Gy and G, are mixed in X, then Gy is a component block if and only if
¥(Gy) is a component block.

If T is a collection of blocks in X then T is a representing collection over g in X
if and only if p(T) = {¢(G) | G € T} is a representing collection over ¢(g) in Y.

6. EQUIVALENCES
In this section we build a decreasing sequence of nine equivalences and employ it
to show that in the Main Theorem (3) implies (2).

Definition. Any finitely generated variety V of almost regular distributive dou-
ble p-algebras with P(V) C AR will be called an AR-variety.

Notation. To any AR-variety V we assign the following cardinals:

n1(V), the number of non-isomorphic Stone kernels in P(V);
n2(V) = max{|S| | S € P(V) is a Stone kernel};
n3(V) = max{|C(S)| | S € P(V) is a Stone kernel};
n4(V) = max{|S \ Ext(S)| | S € P(V) is a Stone kernel};
n5(V) = max{|{g | g € End(X), < f}|| f € Bnd(X) is a br-map, ;

X € P(V)}
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n7(V) = max{|Aut(End(S))| | S € P(V) is a Stone kernel};
ng(V) = max{|{(z,y) | * <y, x,y € Ext(S)}| | S € P(V) is a Stone kernel}.

Observe that n3(V) is also the number of pairwise non-isomorphic Stone nuclei
which belong to V.
We need the definition below to specify ng(V).

Definition and notation. Let S(V) C P(V) be a set of non-isomorphic Stone
nuclei such that for every Stone nucleus N € P(V) there is an Ny € S(V) isomorphic
to N. For any Stone nucleus IV, select once and for all an isomorphism iy of N onto
a member of S(V).

We need to consider dp-spaces such that

(b) Def(X) = @, and X is a connected space containing exactly two distinct
elements z, y with Ext(z) = Ext(y).

Clearly, these are the dp-spaces which are the union of exactly two intersecting nuclei.

Let S1(V) C P(V) be a set of non-isomorphic dp-spaces satisfying (b), and such
that for every X € P(V) with the property (b) there exists an Xy € S1(V) isomor-
phic to X. For any dp-space satisfying (b), select once and for all an isomorphism
jx of X onto a member of S;(V).

Next, let 77 (V) consist of all dp-maps k: X — Y with X € S(V)and Y € 5;(V)
such that Im(k) contains the two distinct elements z,y € Y with Ext(z) = Ext(y).
From (b) it follows that X is a non-singleton nucleus.

Set ng(V) = [£(V)|.

Lemma 6.1. For any AR-variety V, the cardinals ni1(V), na(V), ns(V), na(V),
ns(V), ne(V), n7(V), and ng(V) are finite.

Proof. The finiteness of ny(V) was shown in [10], the finiteness of ny(V),
n3(V), na(V), n7(V), and ng(V) follows from Statement 2.1(1) and from the finite-
ness of ny (V). Statements 2.6(2), 2.6(3), 2.1(2) and Lemma 2.5 imply that n5(V)
is finite. The finiteness of ng(V) follows from the fact that n3(V) is finite and from
Statement 2.1(1). O

Let an AR-variety V be given, and let .¥/ C P(V) be a class of equimorphic
dp-spaces, that is, let End(X) = End(Y) for all X,V € .. For X,Y,Z € .7,
select isomorphisms ¥ xy: End(X) — End(Y) so that ¢¥xz = ¢yz o xy and
Yxy ohyx = yy = idgna(y)-

We now intend to define a family of equivalences ~; with ¢ =1,2,...,9 on . in
such a way that ~;;1 will be finer than ~; for every ¢, each ~; will have only finitely
many classes, and Y ~g Z will imply that the dp-spaces Y, Z are isomorphic.
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For X,Y € ., the first equivalence ~1 will be defined by the requirement that
X ~1Y if and only if the Stone kernels of X and Y are isomorphic.
The lemma below is a consequence of Statement 2.1(2).

Lemma 6.2. The equivalence ~1 has at most n1(V) classes.

In any class %) of ~; choose a dp-space X € % and a br-map bx € End(X)
arbitrarily. The existence of bx follows from Statement 2.6(1). For any YV € .7 set
by = ¥xy(bx). Then by is a br-map, by Statement 2.6(4) and, by Statement 2.6(3),
for any Y € .#] there exists a unique r-map fy € End(X) with fy < by. We now
define the second equivalence ~9 on . by the requirement that

Y ~9 Z if and only ifYy ~1 Z and Qliyx(fy) = szx(fz).
The claim below now follows from Statement 2.1(3).

Lemma 6.3. If the equivalence ~1 has s1 classes then the equivalence ~5 has at
most s1ns(V) classes. Furthermore, if Y ~9 Z then vy z is an R-isomorphism.

Next, in any class % of ~9 choose a dp-space X € % and an r-map rx € End(X)
such that e(rx) > n(f) for every r-map f € End(X). By Lemma 4.6, such an rx
exists and is nice. For any Y € . set ry = 9xy(rx). By Statements 4.9(2),
3.11(4) and Lemma 4.6, the map ry is a nice m-map and e(ry) > n(f) for every
r-map f € End(Y).

For any Y € .%, there exists an isomorphism ¢} : Im(rx) — Im(ry). For
any f € End(Im(rx)), write ¥4 (f) = ¢4 f(¥y)" . Then ¢4 : End(Im(rx)) —
End(Im(ry)) is a monoid isomorphism and ¢} f = ¢ (f)¢y for every f €
End(Im(rx)).

By Lemma P.5(1), for any Y € ., the map &y : End(Im(ry)) — ry End(Y)ry
given by &y (f) = fry is an isomorphism whose inverse f;l is given by f;l(h) =h]
Im(ry) for every h € ry End(Y)ry. Therefore

oyrx frx(@) = vy (Ex (rx frx))eyrx (@) = ¥y (rx f T Im(rx)) @y rx (z)

for all f € End(X) and = € X. Also, the domain-range restriction of ¥y z maps
ry End(Y)ry bijectively onto rz End(Z)rz because ¢y z(ry) =rz.
We now define the third equivalence ~3 on . by setting

Y ~g Z if and only if Y ~y Z and £ Yy xEy ¥y = Ex bzxEaily.
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For Y ~3 Z write pyz = ¢, (%) L.

Lemma 6.4. If the equivalence ~9 has so classes, then the equivalence ~3 has at
most san7(V) classes. Furthermore, if Y ~3 Z, then vy z: Im(ry) — Im(rz) is a
dp-isomorphism such that, for Y ~3 Z ~3 U and any f € End(Y),

oyzry fry = Yyz(ry lovzry = rzéyz(Hezyry,

YzuYYyz = ¢yu, and

YUy Yyu = @yy Is the identity map on Im(ry).

Proof. From Lemma P.5(1) it follows that the composite f;lwyxfng, is an
automorphism of End(Im(rx)) for every Y € .. Thus if ~3 has sy equivalence
classes, then ~3 has at most son7(V) equivalence classes.

If Y ~3 Z then &'y x& = Ex ¥zxEzvy implies £, by 2& = ¥y (¥,) 1
Thus for any f € End(Y) we obtain

ey zry fry = @ () try fry = @ Wy (ry fry [ Im(ry))(0y) " 'ry
=y (y) " Hry fry [ Im(ry))@y (9y) 'ry
=& by 28y (ry fry | Im(ry)) oy 27y

=& My 2 (ry fry)eyzry =120y 2(fey zry

because &y (ry fry | Im(ry)) = ry fry, ¢¥yz(ry) = rz, and Im(rz) = Im(pyz).
The remaining equalities follow by a straightforward calculation. O

In any class .3 of ~3 choose a dp-space X € .%5. By Lemma 5.8, there exists
a representing collection T x over rx in X. Select one such collection and, for any
Y € 7, set Ty = ¢xy(Tx). Then, by Statement 5.10, Ty is a representing
collection over ry in Y.

For any Y € .3 and every G € Tx, set 7v(G) = vy x(B(¥xyv(G), [ry])), where 8
is the map defined just before Lemma 5.6.

Then vy (G) € W, where W = {CNIm(rx) | C € C(X)} U (Im(rx) \ Ext(X)).

We now define the fourth equivalence ~4 on . by requiring that

Y ~4 Z ifand only if Y ~3 Z and 7y = 2.

By Lemma 4.1 and Statement 5.10, the mapping ~y is one-to-one and, by (1) and
(2) in Lemma 5.6, members of its domain can be naturally identified with elements
of W. Therefore {vy | ¥ ~4 X} is a collection of partial permutations of W with
the same domain.
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Lemma 6.5. If ~3 has s3 euivalence classes then ~4 has at most ss(n3(V) +
ny(V))! equivalence classes.

IfY ~4 Z then vy z is a C-isomorphism such that G € Ty is a component block
corresponding to a Stone nucleus N if and only if 1y z(G) € Ty is a component
block corresponding to N.

Proof. The first claim follows from the observation just above the statement
of this Lemma.

Let Y ~4 Z. The definition of ~4 implies that a block G € Ty is a point block
if and only if pyz(B(G,[ryv])) = BWyz(G),[rz]) is a non-extremal point, while
G € Ty corresponds to a Stone nucleus N if and only if the Stone nucleus of the
component oy z(3(G, [ry])) = B(Wyz(G),[rz]) is isomorphic to N. Furthermore,
for any Stone nucleus N with |Cy (Y)| > 1, any representing collection Ty contains
a block G corresponding to N, by the first claim of Lemma 5.8. For any c¢2r-map
f > g,ry with [g] € G\ {[ry]}, the map ¥y z(f) > ¥yz(g),rz is a 2r-map of Z.
Since [Yyz(g9)] € Yyz(G) and ¥y z(G) is a component block corresponding to NV,
the map ¥y z(f) is a c2r-map such that Avy z(f) is a disjoint union of two Stone
nuclei isomorphic to N. By Statement 3.12, ¢y z is a C-isomorphism. O

Let .4 be an equivalence class of ~4 and let Y, Z € ..

For every component C € C(Y') with C' N Im(ry) = ), there exists a component
block G € Ty and [g¢] € G with Im(gc) N C # 0 and Im(gc) \ C C Im(ry). By
Lemma 6.5, the Stone nucleus of K (Im(1y z(g¢)) \Im(rz)) is isomorphic to Nuc(C).
Therefore the mapping ey z: C(Y') — C(Z) given by

ey 2(C) = K(Im(vyz(gc)) \Im(rz)) if Im(ry)NC =0,
YT K(ey2(C N Tm(ry))) if Tm(ry) NC # 0

is well defined, and Nuc(ey z(C)) = Nuc(C) for every C € C(Y'). For any Y, Z,U €
4, equalities ezpyeyz = eyy and ezyeyy = idecy) follow from the choice of iso-
morphisms ¢y z and Lemma 6.4.

For any class .#4 of the equivalence ~4 choose an X € .¥;. By Lemmas 1.8 and
4.6, for every component C' € C(X) with C NIm(rx) = @ there is an r-map gc¢
satisfying

(gC) Im(gc) N C # 0 and Im(gc) \ € C Im(rx),

such that go(Im(rx)) = Im(gc), and e(gc) = n(g) for every r-map g € End(X)
satisfying (gC). For every Stone nucleus N with |Cy (X)| > 1 set

Gy = {[rx]} U{[gc] | C € Cy(X) and Im(rx)NC = 0}.
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By Lemma 5.6 and Corollary 5.9(2), Gy is a component block similar to some block
G € Tx. When we replace the block G by Gy for every Stone nucleus N with
|Cn (X)| > 1, then, by Lemma 5.8, we obtain a new representing collection T x. For
any Y € % and for C' € C(Y) with C' NIm(ry) = 0 define g = ¥xy (g9c) where
eyx(C") = C. The correctness of this definition follows from the definition of ey x.
By Lemma 4.6 and Statement 4.9(2), all r-maps gc and gor = ¥xy(gc) are nice.
By Statement 5.10, Ty = ¢¥xy (T x) is a representing collection for every Y € .%}.

By Statement 2.1(4), for any component C' € C(X) with CNIm(rx) = () there exist
r-maps gc € [rx] with gcgc = g and goge = go. For any C' € C(X) intersecting
Im(rx), we set go = goc =rx. ForY € % and C € C(Y'), set go = ¥xy (q¢’) where
C' =eyx(C). For Y, Z € .4 we now define a mapping oyz: Ext(Y) — Ext(Z) by
setting

oyz(x) = ¥y z(90)pyzac(z) if € Ext(Y)NC and C € CY).

Proposition 6.6. IfY ~4 Z ~4 U, then

(1) oyz: Ext(Y) — Ext(Z) is an order preserving bijection with the dp-property;
(2) ovz(y) = eyz(y) for every y € Ext(Y) NIm(ry);

(3) Oyy = 0zU0vyZz and ouyoyu is the identity OfEXt(Y),‘

(4) oyzfly) = Yyz(f)oyz(y) for every y € Ext(Y) and for every f € End(Y)
which is an r-map or a 2r-map, or which satisfies f < ry.

Proof. It is clear that oyz satisfies (1), (2) and (3).
In the six steps below, we prove that the equality

(e) oyzf(y) =vyz(f)oyz(y) for all y € Ext(Y)

holds for any f € End(Y) which is an r-map or a 2r-map or satisfies f < ry.
Step 1. If f < ry then ¥y z(f) < ¢yz(ry) = rz, and by Lemma 6.4, for any
y € Ext(C), C € C(Y') we have

Yyz(flovz(y) = Yy z(f)Yyz(9c)eyzac(y) = Yy z(ry fgc) ey zqc(y)
= ovzry f9cac(y) = evzf(y),

so that (e) holds for such f, by (2).
Step 2. Assume that f € [g¢] for some C' € C(Y). If y € Ext(C”) with f(y) € C,
then, by Lemma 6.4

oy zf(y) = VYyz(9c)pyzacfacac (y) = Yy z(gcac fgc ) ey zqc: (v)
=Yy z(lyz(gc)ey zac (v) = Yy z(foyz(y).
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Next suppose that y € Ext(C’) and f(y) ¢ C. Then f(y) € Im(ry) \ gc(C). Denote

eyz(C) = D. Then ¥y z(qc) = qp and thus oy z(f(y)) € Im(rz) \ vy z(qc(C)) =
Im(rz) \ ¢p(D). Now, by Lemma 6.4,

oyzf(y) = evzqacfgcrac (y) = Yy z(acfac) ey zac: (v)
=Yy z(qc)¥yz(floyz(y) = ap¥yz(f)oy z(y).

Denote z = ¥y z(f)oyz(y). If qp(z) # 2 then ¥y z(f) € [¥vz(9c)] = [gp] implies
that z € Im(¢yz(f))\1m(rz) = Im(’(/)yz(gc)) \Im(rZ) g D. But then Uyz(f(y)) S
gp(D)—a contradiction. Hence ¢p(z) = z, and (e) holds again.

Step 3. Assume that f is an r-map such that fr = f for some r € [ry], and that
Im(f) € U{Im(gc) | C € Cry(Y)}. Then there is a smallest set .o/ C Ca) (Y) with
f <sup{gc | C € &/} and, clearly, the set & is finite. Since fr = f, from Statement
2.1.(4) it follows that for every C' € & there exists a g € [gc] with fgr = f.
Therefore 1y z(f)vz(9c) = Yyz(f) for all C € o, Yy z(f) < sup{yz(9c) | C €
o/} and Yy z(f) £ sup{¢yz(g9c) | C € &'} for any proper subset &7’ of /.

Observe that for any U € . and an arbitrary r-map g € End(U), if g < sup{gc |
C € A} for some finite Z C C(U) and g £ sup{gc | C € #'} for every proper subset
A of B, then Im(g) = (U{Im(gc) \ Im(ry) | C € B}) U (N{Im(ge) | C € #}).
Therefore Im(f) = (U{Im(g;) \ Im(ry) | C € &}) U (N{Im(gy) | C € &}), and
In(y2(f)) = (UTm(dy 2(g)) \ Im(rz) | C € o/} U (M{Im(dy 2(9)) | C € 7},
by the choice of /. Since r, f and g are r-maps, from fr = f and fg, = f
it follows that the kernels of f, r and g, coincide. Hence if y € Im(r) \ Im(gs)
then f(y) = go(y) and f(y) = r(y) = y for all y € N{Im(gy) | C € &}. For the
same reason, the kernels ¥y z(f), ¥y z(r) and ¢y z(g¢) coincide, and if z € Im(rz) \
Im(¢y z(gc)) then Py z(f)(2) = ¥y z(9c)(2) and Py z(f)(2) = ¥y z(r)(z) = z for
all z € N{Im(vyz(9¢)) | C € &}

Next, let y € Ext(Y') be such that f(y) € C' and C € «/. Then r(y) € Im(r) \

Im(g;). Since Nuc(C) = Nuc(eyz(C)), we get pyz(Im(r) \ Im(g;)) = Im(rz) \
Im(¢y z(9¢)) and thus ¢y z(r(y)) € Im(rz) \ Im(¢y z(9¢)). From (2) and Steps 1
and 2, oyz(r(y)) = ¥y z(r)(oyz(y)) € Im(rz) \ Im(¢y z(gc)). Hence

ovzf(y) =ovzger(y) = vyz(9e)by z(r)oyz(y) = Yy z(f)yz(r)oy z(y)
=Yyz(f)oyz(y).

Let y € Ext(Y) with f(y) € ({Im(g;,) | C € &/}. Then f(y) = r(y), and
Nuc(K (r(y))) is not isomorphic to Nuc(C) for any C € &/. Hence

Nuc(K (pyz(r(y)))) # Nuc(ey z(C))
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for any C' € &7, and thus, by (2) and Step 1,

oy 2(r(y)) = ¥vz(r)oyz(y) € ([{Im(yyz(ge)) | C € ).

Therefore

oyvzf(y) =ovzr(y) = vyz(r)oyz(y) = Yvz(f)byz(r)oyz(y) = Yyz(f)oyz(y).

Altogether, ¥y z(f)oyz(y) = oy z f(y) for any y € Ext(Y).

Step 4. Assume that f is an r-map such that fr = f for some r € [ry]. Then
there exists an r-map f’ € End(Y") close to f, satistying ff' = f, f'f = f’, and such
that Im(f’) C U{Im(gc) | C € &} or f' € [ry].

Then ¢y z(f) and ¢y z(f') are close, by Statement 4.9(6). From vy z(f)vy z(f
Yy z(f) we get Yy z(f) | Ext(Z) = ¥yz(f') | Ext(Z). Since f | Ext(Y) =
Ext(Y), using Steps 1 and 3 we conclude that f satisfies (e).

Step 5. Let f € End(Y) be any r-map. Then, by Statement 2.1(4), there exist
go € [ry] and g1 € [f] such that gigo = g1 and gog1 = go- Then gof < ry and
9190f = f, and then (e) holds because for any y € Ext(Y) we have

)
f/

—

oyzf(y) = ovzg190f(y) = Yy z(g91)oy z90f (y) = Py z(91)¢y z(90 f)ov 2 (y)
=y z(floyz(y)

from Steps 4 and 1.

Step 6. Let f be a 2r-map.

If f is a p2r-map, then there is an r-map f’ € End(Y) such that f'f = f' = ff'.
But then ¢y z(f) | Ext(Z) = ¥y z(f') | Ext(Z), and because f [ Ext(Y) = f' |
Ext(Y"), we conclude that (e) holds again.

Suppose that f is a c2r-map. Let y € Ext(Y). There is a Stone kernel S of YV’
intersecting K (y) such that all its other components intersect the image of f, and
such that S intersects K (f(y)) whenever Nuc(K(f(y))) % Nuc(K(y)). By State-
ment 2.1(1), there is an r-map g1 with Im(g;) = S. Clearly, fg1 < g2 for some
r-map g2 and, by Statement 2.1(4), we may assume that gs is one-to-one on Im(ry).
Hence there exists an h € End(Y') such that fg; = goh and h < ry. But then, from
Steps 1 and 5,

ovzf(y) =ovzfa(y) = ovzgeh(y) = Yy z(g92)oy zh(y)
=Yy z(92)¥y z(h)oy z(y) = Yy z(f)Yyz(g1)oy z(y)
=y z(floyzg1(y) = Yy z(f)oyz(y)

because g1(y) = y. Therefore (e) holds also for any 2r-map. O
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Let .4 be a class of ~4. For the dp-space X € ¥, already selected, choose a
proper collection Z#x over rx. This is possible, by Lemma 4.5, because rx is nice.
For every Y € .7 denote #y = ¢xy(Fx). Then .Fy is a proper collection over ry,
by Statement 4.9(4).

Further, for every C € C(X) with Im(rx)NC = ), the r-map g¢ is nice, and hence
there exists a proper collection .%#’ over g¢. For every f € %' with AfNC = () there
exists some gy € Fx with Af N Agy # 0, and hence also a 2r-map hy € End(X)
with hy > go and Ahy = Agy. Define o = {f € F' | AfNC #0YU{hs| f €
F', AfNC = (}. Since Fx is a proper collection, we obtain, by Lemmas 3.7 and
4.5, that %#¢ is a proper collection over g¢.

Let Y € . and D € C(Y') be such that Im(ry) N D = @, and let C = ey x(D).
Then Im(rx) N C = (), and we set Fp = ¥xy(Fc). By Statement 4.9(4), Fp is a
proper collection over gp = ¥ xy (gc). For any C' € Cg (X) for which CNIm(rx) #
(0, we have gc = ry and we set o = Fx. Forany Y € .9, if D € Cez) (Y) is such
that D NIm(ry) # 0 then gp = ry and ey x (D) NIm(rx) # 0, so that Fp = Fy.
Thus for any Y, Z € .4 and any D € C(3)(Y'), we now have a proper collection .7 p
over gp such that if f € Zp and Af NIm(ry) # 0 then Af = Ag for some g € Fy,
and if Eyz(D) = D’ then '(/)yz(ﬁzp) = %p.

We also note that, for distinct components Dy, Dy € C(2) (V') disjoint with Im(ry),
the proper collections #p,, #p, are disjoint.

For any Y € ., denote

Nd(Y) = Ext(Y) U {z € Mid(Y) \ Def(Y) | E(z) # {z}}.

For any Y, Z € .4, we now intend to define an extension 7y z: Nd(Y) — Nd(Z)
of the mapping oy z defined earlier. We set

oyz(z) for z € Ext(Y),
Tyz(x) =
Vf(.’L‘) for z € E(Af) CC, fe %, Ce C(g) (Y),

where vy was defined in Statement 4.11.

Lemma 6.7. For any Y, Z € ., the map Ty z has the following properties:

(1) Ty z maps E(z) bijectively onto E(ry z(z)) for every x € Nd(Y) N Mid(Y');

(2) Tvz maps K(Im(ry)) N Nd(Y) bijectively onto K (Im(rz)) N Nd(Z);

(3) 7yvz maps C N Nd(Y) bijectively onto ey z(C) N Nd(Z) for every C € C(Y)
with Im(ry) N C = 0;

(4) Ty z is a bijection;

(5) ify,z € Mid(Y) N Nd(Y'), then {y, z} is a comparable pair in Y if and only
if{ryz(y), 7vz(z)} is a comparable pair in Z;
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(6) ify € Im(ry) N Nd(Y) then 1y z(y) € Im(pyz) =Im(rz);
(7) ifalso U € ¥ then 1yy = TzuTy z, and Tyy Tyy is the identity mapping on
Nd(Y).

Proof. From Statement 4.11 and Lemma 6.5 we immediately obtain (1).

Since oy z is a bijection and ¢y z(Fy) = Fz, (2) follows from the definition of
Ty z and (1).

We turn to (3). If C'is a component of Y disjoint with Im(ry ), then Im(gc)NC # 0.
For any f € ¢, either Af C C or else there is an f' € %y with Af’ = Af. Since
Fy and F¢ are proper, from Lemma 4.7 it follows that Af’ = Af if and only if
Ay z(f') = Ay z(f). Therefore Af C C if and only if Ay z(f) C eyz(C), and
(3) follows from (1) because oy z and vy are bijective.

Claim (4) follows from (2) and (3).

Claims (5) and (6) are the respective consequences of Statements 4.11(2) and
4.11(1).

Finally, TYU = TZzUTY Z follows from Oyy = Ozyuo0OyyZz and wYU = wZUwYZ, and
the reason for Tyy vy = ide(y) is similar. O

For any Y € .7 and y € Y, set Ky (y) = qx(y)(y). Thus ky: Y — Im(ry).

Lemma 6.8. The mapping ky has the following properties:

(1) if 2,y € Nd(Y) and K(z) = K(y), then sy (z) = ry(y) if and only if
y € E(x);

(2) Ky has the dp-property;

(3) if Cy,Cy € Cn(Y) for a Stone nucleus N, and if f; € F¢, for i = 0,1,
then ky (Afy) = ky(Af1) if and only if for some j = 0,1 there exists an
h € End(Y') such that h(Im(f;)) = Im(f1—;) and qc,_,hqc, = qc;;

(4) if Y ~4 Z and xo,21 € Nd(Y), then ky(xo) = ky(z1) if and only if

kzTyz(%0) = KzTy z(1).

Proof. Claims (1) and (2) follow because g, is an r-map for every y € Y.

To prove (3), let Cy,C1 € Cn(Y) and f; € F¢, for i = 0,1. Then Ky (Af;) is a
singleton because Af; C E(x;) for x; € Af; NIm(gc,).

Assume that xky (Afy) = ky(Af1). Then for h; = go,_,qc, € End(Y) we have
hi(z;) = z1-4, hi(Im(gc,;)) = Im(gc,_,), and q¢,_,hige, = qc, for i = 0,1. Obvi-
ously, for some j = 0,1, f; is a pt2r-map or fi_; is an n2r-map. Hence there is an
h € End(Y') such that A(Im(f;)) = Im(f1—;), by Statement 3.9(1).

Conversely, assume that for some j = 0,1 there exists an h € End(Y) with
h(Im(f;)) =Im(f1—;) and go,_,hqe; = qc;. Then h(Af;) = Afi_j and q¢, (Af;) =
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qc,_;(Afi—;) because f; and fi_; are p2r-maps. Whence sy (A fo) = xky (Af1) and
(3) is proved.

Let zg,21 € Nd(Y). If 9 € Ext(Y) then sy (z9) = ky(z1) implies that z; €
Ext(Y) and g (z,)(70) = qK (2,)(21). Since 7y 7z extends oy z, from Proposition 6.6
we obtain QK(Tyz(ZC()))(TYZ('TO)) = qK(Tyz(xl))(TYZ(xl))7 and hence Klz(Tyz(l’())) =
Hz(Tyz(.'L‘l)).

If 2; € Im(gx(z,)) \ Ext(Y), then there exists a unique f; € Fg(,,) with z; € Af;
for i = 0,1. In this case, if Ky (x9) = Ky (21) then from Statement 3.9(3) and from
(3) we conclude that kz(mvz(z0)) = kz(Ty z(x1)).

For i = 0, 1, there is a unique z; € Im(gx(5,)) with z; € E(z;). By Lemma 6.7(1),
we have 7y z(z;) € E(ryz(z;)) and, by (1), ky(z;) = ky(z) and kz(1yz(z:)) =
kz(Ty z(zi)). Thus, by the previous paragraph, ky (z¢) = ky (z1) implies

kz(Tyz(20)) = kz(Ty z(21)),

and kz(Tyz(x0)) = kz(Tyvz(21)) follows.
If kz(tyz(x0)) = kz(7y z(x1)) then, using what was shown above, we obtain

Ky (z0) = ky (Tzy (Ty 2(20))) = Ky (Tzy (Ty z(21))) = Ky (21),

which completes the proof of (4). O

For any Y € ., we now intend to define a partial mapping gy from Im(rx) into
itself as follows: for any = € Im(rx) for which there exists a y € Nd(Y') such that
x = pyxKy (y), and only for these elements x, we set oy (z) = kx (Ty x (¥)).

Lemma 6.9. LetY,Z € .. Then the partial mapping oy is correctly defined
and has the following properties:

(1) oy is one-to-one;

(2) oy (x) is defined and gy (x) = x for every x € Ext(Im(rx));

(3) if oy = 0z, then 7y z has the dp-property and oy zky = KzTyz.

Proof. From Lemma 6.8(4) it follows that oxy is a correctly defined injection
and, by Proposition 6.6(4), gy (z) = z for any € Ext(Im(rx)). Thus it remains to
prove (3).

Assume that oy = pz. Let y € Nd(Y'). Then z = py xxy(y) € Im(rx) and hence
0z(x) = oy (z) = kx (v x(y)). Write z = 7y z(y). Then

kx(Tzx(2)) = kx(tzx (v z(y))) = kx (Ty x (y)) = 0z(2)
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and, by (1), kz(2) = oxz(z) = vyz(exy(r)) = pyzry (y). Thus oy zky = KzTy 2.
From this and Lemma 6.7(2) it follows that 7vz maps C N Nd(Y') bijectively onto
eyz(C) N Nd(Z) for every component C of Y intersecting Im(ry ), while this is true
for all other components because of Lemma 6.7(3). Using ¢y zky = kzTy z, the fact
that vy z, Ky and kz have the dp-property (see Lemmas 6.4 and 6.8(2)), together
with Lemma 6.8(1), we conclude that 7y z has the dp-property. This proves (3). O

Define the fifth equivalence ~5 on . by
Y ~5 Z if and only if Y ~4 Z and gy = 0z.
The claim below holds because Im(gy ) = kx(Nd(X)) for every Y € ..

Lemma 6.10. If the equivalence ~4 has s4 classes then ~5 has at most s4n4(V)!
classes. If Y ~5 Z, then Ty 7 has the dp-property.

Let Y ~5 Z. Recall that, for any x € Y \ Def(Y), we have x ¢ Nd(Y) if and
only if z € Mid(Y') and E(x) = {z}. Consider such an x, and denote C = K(z).
Then wy 5 (x) = Yy z(9c)pyzqe(x) € (Mid(Z) \ Def(Z)), and y = w4 (x) ¢ Nd(Z)
because 7zy has the dp-property and maps Nd(Z) onto Nd(Y). Therefore E(y) =

{y}-

This enables us to extend 7y z to a mapping wyz: Y \ Def(Y) — Z \ Def(Z) by

() = Tyvz(x) for x € Nd(Y),
YT (@) for x € Y\ (NA(Y) U Def(Y)).

Lemma 6.11. IfY ~5 Z ~5 U, then

(1) wyyz is a bijection and has the dp-property;

(2) wyz(x) = 1vz(x) for any x € Nd(Y) and wyz(x) = pyz(x) for any z €
Im(ry);

(3) wzuwyz = wyv, and wyywyy is the identity on Y \ Def(Y);

(4) wyzf =vyz(f)wyz whenever f € End(Y) is an r-map or a c2r-map.

Proof. Claims (1), (3) and the first statement in (2) follow easily. The second
statement in (2) follows from Proposition 6.6(2) and Lemma 6.7(6) because wy z has
the dp-property, by (1).

It remains to prove (4).

We know that oy z f = ¥y z(f)oyz on Ext(Y) for every f which is an r-map or a
c2r-map. In order to prove (4), we only need to show that wy z(Im(f) N Mid(Y)) =
Im(¢y z(f))NMid(Z). Since the image of a ¢2r-map is the union of images of r-maps
below it, see Lemma 3.1, we may assume that f is an r-map.
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Let z € Im(f)NMid(Y'). If E(z) = {z}, then E(wyz(z)) = {wyz(z)} and, because
the bijection wy 7 extends oyz and has the dp-property, wy z(z) € Im(yz(f)) N
Mid(Z).

If E(x) # {x} then there exists an f' € () with Af’ C E(x) and either f
is an n2r-map or E(x) is an antichain. Since Fg(,) is proper, by Theorem 4.10
and Statement 4.11, for every z € E(z) there exists a k. € S(Fx(a), 9K (@) [')
such that k.gx () is an r-map for which 2z € Im(k.gx(2)) and wyz(z) = vy (2) €
Im(¢y z(k-9x(x))). Since f and k.gg () are r-maps such that Im(f) and Im(k. gk ())
intersect E(x) we conclude, by Proposition 6.6(1) and 6.6(4), that Im(¢y z(f)) and
Im(Yyz (k9K (2))) intersect E(Avy z(f')). Furthermore, from the hypothesis on f’
and from Statements 3.11(3) and 4.11(2) it follows that either ¢y z(f’) is an n2r-map
or E(AYyz(f')) is an antichain. Therefore, by Statement 3.13, Im(f) N E(Af') =
Im(k. g9k (z)) N E(Af') if and only if

Im(yz(f)) N E(AYyz(f)) = Im(dy z(k=9Kk (2))) N E(Ay z(f)).

Hence f(z) = k.gk (s () if and only if

Yy z(F)wyz(®) = ¥y z (k29K (2) (Wy 2(2)) = Koy 2 (2)IK (0y 2 (2)) (WY z(T)).

Therefore © = z if and only if Yy z(f)(wyz(x)) = wyz(z). Thus wyz(z) €
Im(¢y z(f)). This proves (4). O

For any class .5 of the fifth equivalence, choose an X € .%5. Let % (X) be a
collection of equivalence classes of p2r-maps of X such that

(v1) Im(fo) % Im(f1) whenever [fo], [f1] € %(X) are distinct,
(v2) for every p2r-map f € End(X) there is an f' € %(X) with Im(f) = Im(f’),
(v3) if f is a p2r-map, [f'] € %(X) and Im(f) = Im(f’), then

HC e C(X) | CNIm(rx) NIm(f) # 0} > {C € C(X) | CNIm(rx) NIm(f") # 0}

The existence and the finiteness of % (X) follow from Lemma 3.1 and State-
ment 2.1(1).

Let [g] € %(X) and let C,C" € C(X) be components such that M = CNIm(rx) #
) = C NIm(g), and C' NIm(g) = M’ satisfies (b) from the definition of ng(V) =
|7 (V)| at the beginning of this section. Suppose that there is a k: N — N’ €
(V) with M = N and M’ = N’. By Lemma 1.8, there exists a map (gk) € [¢]
such that (gk) | C' = jy kivrx | C and Nuc(K ({(gk)(D))) = Nuc(D) for every
D e C(X)\{C} with DNIm(rx) # (. Select one such (gk) € [g] for each k € A (V)
and [g] € %(X), and let % (X)) denote the collection of all these (gk) € End(X).
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Lemma 6.12. For any Y ~5 X ~5 Z,

(1) if, for a p2r-map f € End(Y) and y € Y, there exists a ¢2r-map or an r-
map g € End(Y) for which y € Im(g) and fg is an r-map, then wy z f(y) =
Yy z(flwy z(y);

(2) wy2(Im(f)) = Tm(by 2(F)) for any p2r-map f € End(Y);

(3) if for a p2r-map f € End(Y) and y € Y there exists a dp-subspace M > y
isomorphic to Nuc(K (y)) and such that Af C f(M), then there exist r-maps
90,91 € End(Y) and p2r-maps fo, f1 € End(Y) such that ¢1 € [ry], fo €
by (%(X)), Tm(go) N K (y) = M, fu(lm(fo)) = T(f), and fgo = fu fogu;

(4) if wyxxy(flwxy | Im(rx) = wzx¥xz(f)wxz | Im(rx) for every f €
% (X), then wyzg = Yy z(g)wyz for every p2r-map g € End(Y);

(5) [9(X)| < na(V).

Proof. To prove (1) we apply Lemma 6.11(4). Then

wyzf(x) =wyzfg(x) = Yyz(fo)wyz(x) = Yyz(flwyzg(x) = Yy z(flwyz(x),

and (1) is proved.

Let f € End(X) be a p2r-map. Then there are non-equivalent r-maps go, g1 < f
such that Im(f) = Im(go)UIm(g1) and Im(¢y z(f)) = Im(¢y z(g0)) UIm(sby z(g1))—
see Lemma 3.1 and Statements 3.11(3) and 3.12(2). By Lemma 6.11(4),
wy z(Im(g;)) = Im(¢y z(g;)) for i = 0,1 and the proof of (2) is complete.

To prove (3) first assume that Y = X. By (v1), there exists an [f'] € %(X) such
that Im(f") = Im(f). Denote M’ = Im(f) N K(Af), then M’ satisfies (b). Since
M is a Stone nucleus of K(y) such that Af C f(M), we conclude that the map
k = jar fiy,) belongs to (V).

Set fo = (f'k) € %41(X) and N = K(Af") NnIm(f’). Since Im(fo) = Im(f’") =
Im(f), from Statement 3.9(1) and Lemma 1.8 we obtain an f; € End(X) such that
fuint = dap, iIm(fo)) = Im(f) and fi(z) = 2 for any z € Ext(Im(f)). Let
C,,Cy € C(X) have their Stone nuclei isomorphic to M and let C, NIm(rx) # 0 #
CyNIm(f). Then the set M U(Im(g")\ Cy) is a Stone kernel of X, and, by Statement
2.1(4), there is an r-map g1 € [rx] such that ¢,(Cy) C Cy, ig, a1 | M = i,
g1(Im(f) \ Cf) = Im(rx) \ C; and f1fog1(x) = x for any x € Im(f) \ Cy. The last
property holds because f;(z) = z for any 2 € Ext(Im(f)). Since f [ M = jy/ ki |
M = fljg,,lkigl(M)gl [ M = fifog1 | M and because f is an idempotent we conclude
that fifog1 | (MU(Im(f)\Cy)) = f | (MU(Im(f)\Cy)). By Statement 2.1(1) and
2.1(4), there exists an r-map go with g1go = g1 and Im(go) = M U(Im(f)\Cy). Then
for any x € X, f1fog1(2) = f1fog190(x) = fgo(x) because go(x) € M U (Im(f)\ Cy).
Therefore (3) holds for ¥ = X.
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IfY ~5 X and f € End(Y) satisfies the hypothesis, then ¥y x (f) is a p2r-map be-
cause Yy x is a C-isomorphism, by Lemma 6.5. Let A € End(Y) be any r-map such
that M C Im(h) C Im(f) U M. Then, by Lemma 6.11, wyxh = ¥y x(h)wyx and
hence wy x (M) is a nucleus. From (1) we obtain that wy x f(z) = ¥y x (f)wy x (2)
for every x € Im(h) \ M. If ¢ < f is any r-map then gfh # fh, and hence
Ay x(f) € Yy x (f)(Im(¢y x (h))). Therefore Avy x(f) C ¢y x(f)(wyx(M)), and
the hypothesis of (3) is satisfied by ¥y x(f). From the first part of the proof it then
follows that (3) holds.

We turn to (4). Let f € End(Y) be a p2r-map and y € Y. If there isa g € End(Y)
that is either an r-map or a ¢2r-map for which fg is an r-map, then (1) implies that
wyzf(y) = Yyz(f)wyz(y). If there is no such g, then there is a Stone nucleus
N > y isomorphic to Nuc(K (y)) such that Af C f(N). By (3), there exist r-maps
9o, g1 € End(Y) and p2r-maps fo, f1 € End(Y) such that N C Im(go), g1 € [ry],
fi(Im(fo)) = Im(f), fo € ¥xv(#1 (X)), and fgo = f1fog1. From fi(Im(fo)) = Im(f)
and (1) it follows that wyzfi(u) = Yy z(f1)wyz(u) for every u € Im(fy). The
hypothesis wy z¢xy (fo) | Im(ry) = ¥xz(fo)wyz | Im(ry) for fo € % (X) and
Lemma 6.11(4) imply that wy zf1fo91(y) = ¥y z(f1fog1)wyz(y) because Im(ry) =
Im(g1). But then

wyzf(y) = wyzfgo(y) = wyzfifog1(y) = Yyz(fifog1)wyz(y)
=Yy z(fgo)wyz(y) = ¥y z(flwyzgoy) = Yy z(fwy z(y),

and (4) is proved.
The definition of % (X) implies (5) immediately. O

We now define the sizth equivalence ~g on . as follows.

Y ~g Z if and only if Y ~5 Z and

wyx¥xy (floxy [Im(rx) = wzx¥xz(f)wxz | Im(rx) for every f € 4 (X).

Lemma 6.13. If the equivalence ~5 has s classes, then ~g has at most s52"¢(V)
classes.

IfY ~¢ Z, then Yy z(f)wyz = wyz f for every f that is an r-map or a 2r-map.

Proof. By Lemma 6.12(2), Im(wyx¥xy(f)wxy) = Im(f) for all f € 4 (X)
and Y ~5 X. Let k: Im(f) — Im(f) denote the non-identity involution with k(z) =
z for all z € Im(f) \ Af. By Lemma 6.11(1), wxy and wyx have the dp-property,
and hence either wy x¢xy (flwxy = f or wyx¥xy (f)wxy = kf. But then Lemma
6.12(5) implies the first claim and Lemma 6.12(4) implies the second. O
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Lemma 6.14. IfY ~¢ Z and y € Im(ky ) N Mid(Y'), then wy z Is either an order
isomorphism or an order anti-isomorphism of ry' {y} onto r, {pyz(y)}.

Proof. The statement follows from Lemma P.6, (1) and (3) of Statement 3.9,
and Lemma 6.7(5). O

Now we define the seventh equivalence ~7. We set
Y ~7 Z if and only if Y ~¢ Z and wy z is order preserving.

The relation ~7 is an equivalence because of Lemmas 6.11(3) and 6.14. From Lemma
6.14 and from Im(ky) N Mid(Y") C Im(ry) N Mid(Y"), we get the claim below.

Lemma 6.15. If the equivalence ~¢ has sg classes then the equivalence ~7 has
at most s2™ (V) classes.

If Y ~y; Z, then wyy has the dp-property, preserves order, and satisfies
Yy z(flwyz = wyzf for every f € End(Y) that is an r-map or a 2r-map.

For any Y, Z € . with Y ~7 Z, we now define

B wy z(y) for every y € Y \ Def(Y),
vz(v) = d(yz(f)) if f € End(Y) is a dr-map and d(f) =y € Def(Y).

Lemma 6.16. Let .7 be a class of the seventh equivalence. Then, for any
Y, Z € %, the map \yz: Y — Z is a correctly defined bijection that extends wy z
in such a way that

(1) Ayz(K(Im(ry))) = K(Im(rz));

(2) A\yz(C) =eyz(C) for every C € C(Y') with Im(ry) N C = {;

(3) ifalso U € % then A\yy = AzuAyz, and A\yy A\yy is the identity mapping
of Y.

Proof. By Statement 2.3(1), for any = € Def(X) there exists a dr-map f with
d(f) = x. Then, by Statement 2.3(6a), ¥y z(f) is a dr-map, and Statement 2.3(6b)
ensures the correctness of the definition of Ay z. Moreover, from Statements 2.3(6a),
2.3(6b), 2.3(1) and Lemma 6.11(1) it follows that the map Ay z is a bijection of Y
onto Z, and that Ay 7 extends wyz.

Since Ay z extends wy z, from ¥y z(ry) = rz and Statement 4.9(6) it follows that
Ay z maps K (Im(ry)) onto K (Im(rz)).

If Im(ry) N K(z) = 0 for x € Def(Y), then by Statement 2.1(6) and Lemma 2.2
there is a dr-map f such that d(f) = z and Im(f)\ K (z) C Im(ry). From Statements
2.3(6b) and 4.9(6) it then follows that A\yz(z) = d(¢¥xv (f)) € ey z(K(z)).

Finally, Ayy = AzuAy z follows from ¢yy = ¥zyyz and wyy = wzywyz, and
Auy Ayu = idy because YyyYyy and wyywyy are identity maps. O
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For any Y € . and every = € Def(Y) we now define a subset (y () of Im(ry) by
Cy(x) ={ky(y) | z,y are comparable in Y'}.

Lemma 6.17. Let 2,21 € Def(Y). Then

(1) ¢y (xo) = (v (x1) if and only if there exist dr-maps fo, f1 such that f;f1_; =
fi, d(fi) = vi and qg (z,) = QK (0;_,) 1 fori=0,1;

(2) for any Z € & with' Y ~7 Z we have Cy(z9) = (y(x1) if and only if
CzAvz(xo) = CzAv z(21).

Proof. If{y(xo) = (y(x1), then, using Statements 2.1(4) and 2.3(7), we obtain
the required dr-maps f; for ¢ =0, 1.

Conversely, if fifi—; = fi then fi(xzo) = fi(x1) = x; for i = 0,1. From qg(s,) =
4K (z,_,)fi—1 it then follows that Cy (zo) = ((21).

To prove (2), it suffices to note that ¥y z(f;) is a dr-map exactly when f; is a
dr-map, that d(vy z(f:)) = Ay z(z;) for i = 0,1, and then apply (1). O

For any class .%% of ~7 choose an X € .#. For every Y € .% we intend to define
a mapping py from Im({x) into the set of all subsets of Im(rx) as follows: for any
A € Im(Cx) we set puy (A) = py xCy Axy (), where & € Def(X) and (x(z) = A.

Lemma 6.18. IfY,Z ¢ . then:

(1) py Is a correctly defined one-to-one mapping;

(2) if py = pz, then \y z has the dp-property and, for any u € Def(Y') and any
v €Y \Def(Y),

(a) u < v exactly when Ay z(u) < Ay z(v);

(b) v < u exactly when Ay z(v) < Ay z(u);
and, for any two min-defective or max-defective u,v € Def(Y),

(¢) u < v exactly when Ay z(u) < Ay z(v).

Proof. (1) follows from Lemma 6.17(2).
For (2), let y € Def(Y). Then there exists an « € Def(X) with Axy(z) =y, and
hence

py (Cx (7)) = ey x (v (Axy (7)) = ¢y x (Cv (¥))-

Thus, from puy = uz we get

0zx(Cz(A\vz(Y))) = ¢zx ((z(Axz(2))) = nz((x(z))
= py ((x(2) = oy x (v (¥)) = vzx (pyz(Cy (¥)))s
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and hence (z(Avz(y)) = ¢vz((v(y)) = Avz(Cr(y)) because Ayz | Im(ry) =
¢y z is one-to-one. Furthermore, Ext(y) = Ext(K(y)) N &y (¢ (y)). By Lemma
6.16(1) and 6.16(2), and from the definition of Ay z we obtain Ay z(Ext(K(y))) =
Ext(K(Ayz(y))). Since A\yz extends 7y z, and from Lemmas 6.9(3) and 6.11(2), it
follows that

My z(ky' (Gr (1)) NExt(Y)) = 57" Ay z(Cy () N Ext(Z).

Therefore

Ay z(Ext(y)) = Ext(K(Ayz(y))) Nz Ay z(Cy (1))
=Ext(K(A\vz(y))) Nk (Cz(A\vz(y))) = Ext(Ayz(y)),

and hence \xy has the dp-property.

Assume that u € Def(Y) and v € Mid(K (u)) \Def(Y). Then ((u]U[u))NE(v) # 0
if and only if ky (v) € (y(u). Since Ay z has the dp-property, we have Ay zky (v) =
kzAyz(v), and hence kz(Ayz(v)) € (z(Ayz(u)) because (zAyz(u) = Ay z(y (u).
Using Statement 2.3(8), we conclude that u < v exactly when Ay z(u) < Ayz(v),
and v < u exactly when Ay z(v) < Ay z(u).

The claim in (2¢) follows from (1) and (2) of Statement 2.3. O

Now we define the eighth equivalence ~g by
Y ~g Zifand only if Y ~7 Z and puy = pz.
The claim below easily follows.

Lemma 6.19. If the equivalence ~7 has sy classes then the equivalence ~g has
at most s7(2">(V))! classes.

IfY ~g Z then Ayyz has the dp-property, preserves the order on E(y) for any
y € Y which is not doubly defective, and preserves the order between the defective
and the non-defective elements.

Lemma 6.20. IfY ~g Z, then A\yz is an order isomorphism or an order anti-
isomorphism of the set of all doubly defective elements of Y onto the set of all doubly
defective elements of Z.

Proof. The statement follows from Lemma 3.8, (2) and (3) of Statement 3.9,
and Lemma P.6. g
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Lemma 6.21. IfY ~g Z, then

Ayzf =vyz(f)Ivz

for every f € End(Y) which is an r-map, or a dr-map, or a 2r-map.

Proof. If f € End(Y) is an r-map or 2r-map then by Lemmas 6.13 and 6.18(2),
Avzf =vyz(f)A\vz. Thus assume that f € End(Y) is a dr-map. By the above, for
an r-map r(f) < f we have Ay zr(f) = ¥y z(r(f))A\yz and therefore it suffices to
show that ¥y z(f)(Avz(z)) = d(¢Yyz(f)) exactly when f(z) = d(f). Since f(z) =
d(f) implies that = € Def(X), Statement 2.3(6b) and 2.3(11) completes the proof.

O

Lemma 6.22. IfY ~g Z then \yz is continuous.

Proof. By Corollary 3.6 and Lemma P.2, the set
{f~H2}| 2 € Im(f), f € End(Z) is an r-map or a dr-map or a 2r-map}

is a subbase of the topology on Z. Further, an endomorphism f of Z is an r-map
(or a 2r-map, or a dr-map) if and only if ¥ zy (f) is an r-map (or a 2r-map, or a dr-
map, respectively). By Lemma 6.21, Azy f = ¢ zy (f)Azy for any f € End(Z) which
is an r-map or a dr-map or a 2r-map. Since \yyz is a bijection and Azy = A{,lz,
for any such f and each z € Im(f) we have Ay, (f ' {z}) = Y2y (f) '(\y5{z}) =
Vv (f) " (Azy{z}). Thus Ay (f~*{z}) is clopen in Y, and hence \y 7 is continuous
by Lemma P.3. O

In a dp-space Y € DC, let u € Im(ry) N Min(Y) and v € Im(ry) N Max(Y)
be such that u < v and Ext(K(u)) # {u,v}. It is clear that comparable z €
Ky {u} NMid(Y) = B, and y € k3 {v} N Mid(Y) = T, must satisfy z < y. If there
are no such comparable pairs, or if x < y for all x € B, y € T}, with y € K(x), we
say that the pair {u,v} is degenerate.

Lemma 6.23. Let Y, Z ¢ DCN.¥ and Y ~g Z. Then, for any u € Im(ry) N
Min(Y') and v € Im(ry) N Max(Y") with v < v, one of the following two possibilities
occurs:

(1) the pairs {u,v} and {\yz(u),\y z(v)} are non-degenerate, in which case, for
any r € Ky {u} N Mid(Y) and y € ry {v} N Mid(Y) we have r < y exactly
when Ay z(x) < Ay z(y);

(2) the pairs {u,v} and {\yz(u), A\yz(v)} are degenerate.
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Proof. SinceY,Z € DC, the hypothesis of Lemma 3.10 is (vacuously) satisfied.
If {u,v} is non-degenerate and = € B,, y € T, then, by Lemmas 3.10 and 6.19,
we have x < y if and only if A\yz(z) < Ayz(y), and {Ayz(u), Ay z(v)} is a non-
degenerate pair because \y z has the dp-property. O

Finally, we define the ninth equivalence ~g by
Y ~g Z if and only if Y ~g Z and Ayz is an order isomorphism.

For Y € DC, u € Im(ry) NMin(Y) and v € Im(ry) N Max(Y'), a comparable pair
{u, v} that is not a component of Im(ry ) falls into one of the two cases described by
Lemma 6.23. Under (1) of Lemma 6.23, the order on sy {u,v} is fully determined,
while under (2), there are two possible orders on this set. If {u,v} is a component of
Im(ry) then, according to Lemma 6.20, there are two possible orders on #y' {u, v}.
The lemma below now easily follows.

Lemma 6.24. If.¥ C DC and the equivalence ~g has sg classes, then the
equivalence ~g has at most sg2™(V) classes. If Y ~g¢ Z, then \yz: Y — Z is a
dp-isomorphism.

Theorem 6.25. If P(V) C DC, then V is n-determined for some finite n.

Proof. By Lemmas6.2,6.3,6.4,6.5,6.10, 6.13, 6.15, 6.19 and 6.24, there exists
a finite cardinal

m < ny(V)ns(V)ng (V) ((n3(V) + ng (V) (ng (V)!) (272 (V1) 274 (V) Fn6 (V) +ns(V)

such that the equivalence ~g has at most m classes. O

7. CONCLUSION
This section completes the proof of Main Theorem, and shows why the set
{n(V) | V C R is finitely generated }

has no finite upper bound.

We begin with a proof of the latter claim.

For any integer n > 0, let A,, be the dp-space on the set {0,1,...,2n + 1} whose
order is given by 2i < 2i+1>2i+2fori=0,1,...,n—1 and 2n < 2n + 1.

539



Lemma 7.1. For any n > 0, the algebra D(A,,) dual to the dp-space A,, is rigid
and regular.

Proof. Since Mid(A,,) = 0, the algebra D(A,) is regular, and End(4,) =
Aut(A,,) because A, is connected. If a,b € A,, then | Max(a)| = 1 for a = 0 alone,
and |Min(b)| = 1 only for b = 2n + 1. Since the unique order path connecting a to b
passes through all elements of A,,, the identity is the only endomorphism of A4,,. O

For every positive integer n, let V,, be the variety of dp-algebras generated by the
duals D(A;) of all A; with ¢ < n.

Corollary 7.2. The finitely generated variety V,, C R contains at least n + 2
non-isomorphic equimorphic algebras.

We still need to show that (1) of Main Theorem implies (3).

Remark. For any X € FG and any = € X, the dp-subspace Q, = {z} U
Ext(K(z)) of X is the Priestley dual of a subdirectly irreducible algebra, and the
dual @ of any finite subdirectly irreducible algebra satisfies |@ \ Ext(Q)| < 1, see
[4]. According to [11], for X, X' € FG, the algebras D(X) and D(X') generate
the same variety if and only if, up to dp-isomorphisms, the sets {Q, | x € X} and
{Qx | 2’ € X'} coincide.

Let V be an AR-variety, and let P(V) ¢ DC. Then, by [11] and Remark 1.9, there
exists a finite order connected dp-space X € P(V) such that Mid(X) = {x,y, 2},
where x is min-defective, y is max-defective, z is non-defective, and z < z < y. Let
Y denote the finite dp-space on the set X \ {z} whose order is obtained from the
order of X by the removal of comparability x < y. Then Y € P(V).

Let Py denote the category whose objects are all triples (D, a,b), where D is a
Priestley space in which a € Min(D) and b € Max(D) are incomparable elements,
and whose morphisms f: (D,a,b) — (D’,d’,V’) are all continuous, order preserving
mappings for which f(a) = o’ and f(b) = ¥'. By [6], the category dual to Py is
universal.

We now define a functor .Z: Py — P(V) as follows. For any object (D, a,b) €
P2 we set Z(D,a,b) = (DUY,<,7), where D and Y are disjoint. The order <
of Z(D,a,b) is the joint extension of the respective orders on Y and D in which
u < d < v whenever d € D, v € Min(z) and v € Max(z) in X, and z < b, a < y.
The topology 7 of Z(D,a,b) is the extension of the topology on D by the discrete
topology on Y. For any morphism f: (D,a,b) — (D', d’,’), we define Z(f) to
be the extension of f by the identity map of Y. Routine calculations show that
Z(D,a,b) is a dp-space and Z(f) is a dp-map, and from the remark above it follows
that .£(D,a,b) € P(V).
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Lemma 7.3. £: Py — P(V)isafunctorandif f: £(D,a,b) — L (D’,da’,b")}}
is a dp-map satisfying f(xr) = x and f(y) = y, then f(D) C D’ and the restriction
of f to D is a Po-morphism from (D, a,b) to (D',d’,b") C Z(D',d’,b").

Proof. A verification that . is a functor is straightforward.

If f: Z(D,a,b) — Z(D',d',V) is a dp-map with f(z) = z and f(y) = y then
x = f(x) < f(b) and f(a) < f(y) = y because f preserves order, and f(a) € E(f(b))
because f has the dp-property. Hence f(a), f(b) € D’ and thus f(a) = o' and
f(b) =V, by the definition of the order on Y U D’. The map f has the dp-property,
and hence f(D) C D". O

Let & = {(Dj,a;,b;) | i € I} be any family of objects from Py. For simplicity’s
sake, let D; NY = () and D; N D; = () whenever ¢,j € I are distinct. Let (Z/, <, 1)
be the disjoint union of all #(D;,a;,b;) with ¢ € I, let < be the union of the
individual orders of Z(D;,a;,b;), and let the topology 7 be the union of topologies
on Z(D;,a;,b;). For any finite I we set (&) = (Z',<,7). If I is infinite then
H(E) = (Z' U{7'},<,0) where 2’ ¢ Z’, the order < extends the order of Z’ in
such a way that z’ is incomparable to any member of Z’, and ¢ is the one-point
compactification of 7 by {z'}. Set Z = Z’ when I is finite, and Z = Z’ U {2’} when
I is infinite, so that Z is the underlying set of J# (&) in either case. To simplify the
notation, all elements of Y C Z(D;, a;,b;) will also carry the index 1.

Lemma 7.4. If & is a family of Ps-objects, then # (&) € P(V). If f €
End(# (&)) satisfies f(x;) = z; and f(y;) = y; then f(D;) C D; and the domain-
range restriction of f to D; and D; is a Pa-morphism from (D;, a;, b;) to (Dj,aj,b;).

Proof. Since Z(D,a,b) € P(V) for every (D,a,b) € & and because £ (&) is a
disjoint union of all .# (D, a,b) with (D, a,b) € & for any finite &, and (&) is the
one-point compactification of a disjoint union of all £ (D, a,b) with (D, a,b) € & for
any infinite &, the remark concerning subdirectly irreducibles implies that ¢ (&) €
P(V).

If f(z;) = xj and f(y;) = y; then the domain-range restriction of f to £ (D;, a;, b;)
and .Z(Dj, a;, b;) is a dp-morphism from .Z(D;, a;, b;) to £ (Dj, a;,b;). This follows
from Lemma 7.3 because these subspaces are closed order components of ¢ (&£). O

A family & = {(D;,a;,b;) | i € I} of Po-objects is mutually rigid when for all
i,j € 1,if f: (Dy,ai,b;) — (Dj,aj,b;) is a Po-morphism, then j = i and f is the
identity map on D;. Since Pj is dually universal, arbitrarily large mutually rigid
families & C Py exist.

For any I' C I, let ¢ (&,1') be the dp-space obtained from (&) by setting
x; < y; for every ¢ € I'. Thus x; and y; are comparable in 2 (&, I') exactly when
i € I’, and the remainder is unchanged from ¢ (&).
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Lemma 7.5. If & is a mutually rigid family of objects in Py then J#(&,1') €
P(V) and End(# (&,1')) = End(# (&) for any I' C I.

Proof. The remark on subdirectly irreducibles shows that £ (&,I') € P(V).

First, note that the topologies of ¢ (&) and % (&,1") coincide on Z and that, for
any v € Z, Ext(v) in £ (&) is the same as Ext(v) in #(&,1'), and v < w in £ (&)
just when v < w in (&, 1) for any v,w € Z such that {v,w} ¢ {{z;,y;} |i € I}.

Let f € End(#(&))UEnd(# (&,1')). Then f~*(z;) C{z;|j € I}and f~(y;) C
{y; | j € I} for any i € I. Denote {t} = Min(z), {u} = Max(y) in X. Then
{t;} = Min(x;), {u;} = Max(y;), ©; < u; and ¢; < y; for all i € I in both J# (&) and
H(&,1).

Next we note that for any ¢ € I, if f(x;) ¢ {z; | j € I}, then f(x;) = f(¢), and
if f(y;) ¢ {y; | j € I} then f(y;) = f(u;) because f has the dp-property. Hence if
F(wi) & {a; | J € I} or f(ys) & {ys | j € I} then f(x;) < f(yi) in both #(£) and
H(&,1'). Since & is a mutually rigid family, we conclude from Lemma 7.4 that if
f(z;) = xj and f(y;) = yx then i = j = k. Thus f is continuous, has the dp-property
and preserves the order in both J¢ (&) and (&, 1').

Whence End(#(&£)) = End(2 (&,1')). O

Theorem 7.6. IfV is an AR-variety of dp-algebras and P(A) ¢ DC for some
A €V, then V is not a-determined for any cardinal c.

Proof. Let a be a cardinal. The category P2 is dually universal [6], and
hence it contains a mutually rigid family & of cardinality . Since J£(&,1') is
isomorphic to £ (&,1") exactly when |I’| = |I”|, Lemma 7.5 implies that P(V)
must contain a family of non-isomorphic equimorphic dp-spaces of cardinality |{f |
B < «a is a cardinal}| for every cardinal a. O

The proof of Main Theorem is now complete.

Remark. Let L be the class formed by all X € AR for which, for any min-
defective z € X, max-defective y € X and non-defective z € X, [z) N E(2) # 0 #
(y]NE(z) implies [z)N(y]NE(z) # 0. Arguments presented here can be used to show
that L is Nj-determined, that is, every class ¥ C L of equimorphic non-isomorphic
dp-spaces is countable. This result, of course, does not affect Main Theorem, because
P(V) C L implies P(V) C DC for any variety V.

Concluding remarks. Let V be a finitely generated variety V of distributive
double p-algebras. The result of [10] quoted in the introduction says that V is
universal exactly when it contains a nucleus C' € V with a three-element order
component M of Mid(P(C')) for which the identity map is the only dp-endomorphism
of P(C) extending the identity map of M.
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If, for every nucleus C' € V, the union M C Mid(P(C)) of all order components
having at least three elements fails to have such extension property, then the ar-
guments of [10] imply that V has arbitrarily large algebras whose endomorphism
monoids have a finitely bounded size. Since Theorem 2.4 says that every infinite
member of any AR-variety V has infinitely many endomorphisms, it seems natural
to ask about the remaining case, that in which all order components of Mid(P(C)) of
any nucleus C' € V have at most two elements. We conjecture that any such variety
V will contain infinite algebras with finite endomorphism monoids, or, equivalently,
that Theorem 2.4 cannot be strengthened. This conjecture is supported, somewhat
indirectly, by properties of the construction presented in this section. In fact, we also
believe that no finitely generated variety V ¢ AR is a-determined for any cardinal a.

Our third conjecture concerns finitely generated varieties of double Heyting alge-
bras. It appears that any such variety will be n-determined for some finite n = n(V).
The key question here is whether or not an analogue of Lemma 3.1 holds for double
Heyting algebras.

Finally, we note that Theorem 1.5, the principal application of Lemma 1.3, and
Theorem 1.7 imply that

every directly indecomposable homomorphic image D of any algebra A €
V C AR is a subdirect power of (finite) retracts of D.

Is there a reasonably transparent algebraic reason why this is true? And what other
familiar finitely generated varieties other than varieties of double Heyting algebras
may have this property?
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