Previous |  Up |  Next

Article

Keywords:
quasi-metric; continuous map; Borel map; $\sigma $-discrete map; $\sigma $-discretely decomposable family; absolutely Borel set; absolutely analytic space
References:
[1] R. Engelking: General Topology. Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[2] W. G. Fleissner: An axiom for nonseparable Borel Theory. Trans. Amer. Math. Soc. 251 (1979), 309–328. DOI 10.1090/S0002-9947-1979-0531982-9 | MR 0531982 | Zbl 0428.03044
[3] W. G. Fleissner, R. W. Hansell and H. J. K. Junnila: PMEA implies Proposition P. Topology Appl. 13 (1982), 255–262. DOI 10.1016/0166-8641(82)90034-7 | MR 0651508
[4] P. Fletcher and W. F. Lindgren: Quasi-uniform Spaces. Marcel Dekker, New York, 1982. MR 0660063
[5] D. H. Fremlin, R. W. Hansell and H. J. K. Junnila: Borel functions of bounded class. Trans. Amer. Math. Soc. 277 (1983), 835–849. DOI 10.1090/S0002-9947-1983-0694392-0 | MR 0694392
[6] R. W. Hansell: Borel measurable mappings for nonseparable metric spaces. Trans. Amer. Math. Soc. 161 (1971), 145–169. DOI 10.1090/S0002-9947-1971-0288228-1 | MR 0288228 | Zbl 0232.28007
[7] R. W. Hansell: On Borel mappings and Baire functions. Trans. Amer. Math. Soc. 194 (1974), 195–211. DOI 10.1090/S0002-9947-1974-0362270-7 | MR 0362270 | Zbl 0295.54047
[8] H. J. K. Junnila: Neighbournets. Pacific J. Math. 76 (1978), 83–108. MR 0482677
[9] H. J. K. Junnila and H. P. A. Künzi: Characterizations of absolute $F_{{ \sigma }{ \delta }}$-sets. Czech Math. Journal (to appear). MR 1614072
[10] H. P. A. Künzi: On strongly quasi-metrizable spaces. Arch. Math. (Basel) 41 (1983), 57–63. DOI 10.1007/BF01193823
[11] H. P. A. Künzi and E. Wajch: Borel classification via quasi-metrics. Topology Appl. 77 (1997), 183–192. DOI 10.1016/S0166-8641(96)00141-1 | MR 1451651
[12] K. Kuratowski: Topology, vol. I. Academic Press, New York and London, 1966. MR 0217751 | Zbl 0158.40901
[13] E. P. Lane: Bitopological spaces and quasi-uniform spaces. Proc. London Math. Soc. 17 (1967), 241–256. MR 0205221 | Zbl 0152.21101
[14] S. Romaguera and S. Salbany: On bicomplete quasi-pseudometrizability. Topology Appl. 50 (1993), 283–289. DOI 10.1016/0166-8641(93)90026-A | MR 1227555
[15] A. H. Stone: Analytic sets in non-separable metric spaces, Part 5 of “Analytic Sets” (C. A. Rogers et al.). Academic Press, London, 1980.
Partner of
EuDML logo