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ON σ-DISCRETE BOREL MAPPINGS VIA QUASI-METRICS

Hans-Peter A. Künzi, Berne, and Eliza Wajch, �Lódź *

(Received November 16, 1995)

Abstract. Let X and Y be metrizable spaces. We show that, for a mapping f : X → Y ,
there exists a quasi-metric � on X inducing the topology of X such that f regarded as a
mapping from

(
X, max{�, �−1}

)
to Y is continuous if and only if f in the original topology

of X is a σ-discrete map of Borel class 1. Further, we prove that, for every σ-discrete
mapping f : X → Y of Borel class α + 1, there exists a compatible quasi-metric � on X
such that f :

(
X, max{�, �−1}

)
→ Y is of Borel class α. We also investigate a more general

situation when the range of the mapping under consideration is not necessarily metrizable.
In passing, we obtain some results related to the behaviour of absolutely Borel sets and
absolutely analytic spaces with respect to compatible quasi-metrics.

Keywords: quasi-metric, continuous map, Borel map, σ-discrete map, σ-discretely de-
composable family, absolutely Borel set, absolutely analytic space

MSC 2000 : 54E35, 54H05, 28A05, 26A21

1. Introduction

A quasi-metric on a set X is a function � from X × X to the non-negative real
numbers such that �(x, y) � �(x, z) + �(z, y) for all x, y, z ∈ X , and �(x, y) = 0 if

and only if x = y. The conjugate �−1 of the quasi-metric � is the function defined by
�−1(x, y) = �(y, x) for all x, y ∈ X . Then �−1 is also a quasi-metric and the function

�∗ = max{�, �−1} is a metric on X . The topology on X induced by the quasi-metric
� is the topology G (X, �) on X having the collection of all �-balls

B�(x, ε) = {y ∈ X : �(x, y) < ε}

as a base for the open sets. Given a metric space (X, d), we shall say that a quasi-

metric � on X is compatible (with d or on (X, d)) if G (X, �) = G (X, d). In general,

* During her visit to the University of Berne the second author was supported by the first
author’s grant 7GUPJ041377 from the Swiss National Science Foundation.
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a compatible quasi-metric on a topological space X is a quasi-metric on the set X

which induces the original topology of X .

If X is a subspace of a metric space (Y, d), we shall write (X, d) to denote the
space (X, d �X×X).

A natural problem related to the theory of quasi-metrics is the question of when a

mapping f from a metric space (X, d) to a topological space Y can become continuous
if we replace the topology G (X, d) by G (X, �∗) for some suitably chosen quasi-metric

� on X that is compatible with d. In the present paper we shall prove that, for
a mapping f from a metric space (X, d) to a topological space Y , there exists a

compatible with d quasi-metric � on X such that f : (X, �∗) → Y is continuous if
and only if f has in (X, d) a σ-discrete base (in the sense of Hansell) consisting of Fσ

subsets of (X, d). This answer to the above-mentioned question restricts our attention
to σ-discrete Borel mappings and leads us to a more general problem whether the

Borel class of a σ-discrete Borel mapping between metric spaces X and Y can be
lowered if we replace the original topology ofX by the topology G (X, �∗) where � is a

compatible quasi-metric on X . We shall show that a mapping f from a metric space
(X, d) to a metrizable space Y is a σ-discrete Borel mapping of class α+1 if and only

if there exists a compatible with d quasi-metric � on X such that f : (X, �∗) → Y

is a σ-discrete Borel mapping of class α. Since, in classical descriptive set theory,

it is often useful to replace the original topology of a Polish space by a Polish zero-
dimensional topology, we shall turn our attention to the problem whether the quasi-

metric � lowering the Borel class of a σ-discrete Borel mapping can be chosen in
such a way that the covering dimension dim(X, �∗) = 0 and that �∗ is complete if

(X, d) is complete. Indeed, we shall prove that, for every compatible quasi-metric �

on a metric space (X, d), there exists a compatible quasi-metric �̃ on the completion

(X̃, d̃) of (X, d) such that G (X, �∗) ⊆ G (X, �̃∗), dim(X̃, �̃∗) = 0, �̃∗ is complete
and, in addition, if (X, d) is an absolute Fα+1-set (resp. Gα+1-set), then (X̃, �̃∗) is
an absolute Gα-set (resp. Fα-set). Our results on Borel mappings generalize those

obtained in [11] for second-countable Y ’s.

Basic facts concerning Borel sets and Borel mappings can be found in [12]. We

recommend [4] to the reader to get more information about quasi-metrics. All other
topological notions which we refer to can be found in [1].

2. σ-discretely decomposable families of Borel sets

In order to prove our main results on σ-discrete Borel mappings, we must have a

deeper look at σ-discretely decomposable collections of Borel sets. To begin with,
let us establish the appropriate terminology and notation.
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Given a collectionA of subsets of a setX , denote by Aσ, Aδ andAc the collections

of, respectively, all countable unions, all countable intersections and complements of
members of A . Put F0(A ) = G0(A ) = A and, for every non-zero ordinal α < ω1,
define

Fα(A ) =





[ ⋃
γ<α

Fγ(A )
]

δ
when α is even,

[ ⋃
γ<α

Fγ(A )
]

σ
when α is odd,

and

Gα(A ) =





[ ⋃
γ<α

Gγ(A )
]

σ
when α is even,

[ ⋃
γ<α

Gγ(A )
]

δ
when α is odd.

If X is a topological space, we put Fα(X) and Gα(X) to denote, respectively, the
classes Fα

(
F (X)

)
and Gα

(
G (X)

)
where F (X) is the collection of all closed subsets

of X , while G (X) is the topology of X . If α is even, the sets in Gα(X) are of additive
class α, while the sets in Fα(X) are of multiplicative class α; if α is odd, the sets

in Fα(X) are of additive class α and those in Gα(X) are of multiplicative class α.
If the topology of X is induced by a quasi-metric �, we shall often use the symbols

Fα(X, �) and Gα(X, �) to denote the classes Fα(X) and Gα(X), respectively.

A metrizable space X is an absolute Fα-set (resp. absolute Gα-set) if X is of

type Fα (resp. Gα) in every metrizable space containing X as a subspace (up to a
homeomorphic embedding). A metrizable space X is absolutely analytic if, in every

metrizable space Y containing X as a subspace, the space X can be represented in
the form

X =
⋃

τ∈�ω

∞⋂

n=1

F (τ | n)

where F (τ | n) ∈ F (Y ) for τ ∈ �
ω and n ∈ �. (cf. e. g. [6] and [15]).

It is well known that, for α > 1 (resp. α > 0), a metric space (X, d) is an absolute
Fα-set (resp. absolute Gα-set) if and only if (X, d) is of type Fα (resp. Gα) in its

completion or, equivalently, in a completely metrizable space containing (X, d) as
a subspace. Similarly, a metric space (X, d) is absolutely analytic if and only if it

can be obtained by applying the Suslin operation to closed sets of the completion of
(X, d).

The proposition given below was established in [11]. It is an immediate conse-
quence of [10, Thm. 4] and the fact that, if � is a compatible quasi-metric on a

metric space (X, d), then the bitopological space
(
X, G (X, �), G (X, �−1)

)
is pairwise

perfectly normal (cf. [13]).
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Proposition 1. If � is a compatible quasi-metric on a metric space (X, d), then

the spaces (X, d) and (X, �∗) are of the same weight; furthermore

G (X, d) ⊆ G (X, �∗) ⊆ F1(X, d).

Theorem 2. If � is a compatible quasi-metric on a completely metrizable space
X , then the space (X, �∗) is completely metrizable.

�����. Let d be a complete compatible metric on X . The function �0 =

max{d, �} is a compatible quasi-metric on (X, d) such that G (X, �∗) = G (X, �∗0).
For n ∈ �, let Un be the collection of all those sets U ∈ G (X, �∗0) for which there is

xU ∈ X such that cl(X,d) U ⊆ B�∗0 (xU , 2−n). Since G (X, �∗0) = G (X, �−10 ), it follows
from the pairwise regularity of (X, �0, �

−1
0 ) that Un is a cover of X . In order to show

that (X, �∗) is completely metrizable, it suffices to prove that 〈Un〉n∈� is a complete
sequence of open covers of (X, �∗0). To this end, consider an arbitrary filter F of

closed sets of (X, �∗0) such that, for each n ∈ �, there are Fn ∈ F and Un ∈ Un with
Fn ⊆ Un. As d � �∗0, we have d(x, y) � 2−n+1 for any x, y ∈ cl(X,d) Fn; therefore,

∅ �=
∞⋂

n=1
cl(X,d) Fn because the metric d is complete. Let x0 ∈

∞⋂
n=1
cl(X,d) Fn and

suppose, if possible, that there exists F ∈ F such that x0 /∈ F . Take n ∈ � such

that B�∗0 (x0, 2
−n)∩F = ∅. Since cl(X,d) Fn+1 ⊆ B�∗0 (x0, 2

−n), we have Fn+1∩F = ∅,
which is absurd. The contradiction obtained shows that x0 ∈

⋂{F : F ∈ F}, which
completes the proof. �

Definitions. Let A and D be collections of subsets of a metric space (X, d) and
let ε > 0. Then:

(i) A is ε-discrete in (X, d) if, for every pair of sets A, B ∈ A such that A �= B,

we have d(x, y) > ε whenever x ∈ A and y ∈ B;
(ii) A is metrically discrete in (X, d) if there exists ε > 0 such that A is ε-discrete

in (X, d);
(iii) A is σ-metrically discrete in (X, d) if it is the countable union of metrically

discrete in (X, d) collections of sets;
(iv) A is σ-discretely decomposable in (X, d) into members of D if there exists a

sequence of discrete in (X, d) collections Dn ⊆ D such that each member of A

is the union of some members of
∞⋃

n=1
Dn.

Definitions. A binary relation V on a topological space X is called a neigh-
bournet on X if, for each point x ∈ X , the set V (x) = {y ∈ X : (x, y) ∈ V } is a
neighbourhood of x. A neighbournet on X is called unsymmetric if, for all x, y ∈ X ,
we have V (x) = V (y) whenever x ∈ V (y) and y ∈ V (x) (cf. [8, p. 88] or [4, pp. 4–5]).
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Lemma 3. Let � be a compatible quasi-metric on a metric space (X, d) and let

α < ω1. If a collection A ⊆ Fα(X, �∗), resp. A ⊆ Gα(X, �∗), is ε-discrete in (X, �∗),
then A is σ-discretely decomposable in (X, d) into members of Gα+1(X, d), resp. of
Fα+1(X, d).

�����. Let U = {(x, y) ∈ X × X : �(x, y) < ε
4}. By Theorem 4.4 of [8], there

exists an unsymmetric neighbournet V on (X, d) such that V ⊆ U2. Then V ∩V −1 is
an equivalence relation on X ; accordingly, in view of Theorem 4.8 of [8], the partition

{V ∩ V −1(x) : x ∈ X} of X has a refinement D =
∞⋃

n=1
Dn such that each collection

Dn consists of closed subsets of (X, d) and is discrete in (X, d). Let

En = {A ∩D : A ∈ A & D ∈ Dn}

for n ∈ �. It follows from Proposition 1 that ifA ⊆ Fα(X, �∗), resp.A ⊆ Gα(X, �∗),

then En ⊆ Gα+1(X, d), resp. En ⊆ Fα+1(X, d), for n ∈ �. We shall show that the
collections En are discrete in (X, d). To this end, it suffices to check that eachD ∈ Dn

meets at most one member of A .

Suppose, if possible, that there exist A, B ∈ A and D ∈ Dn, such that A �= B

and A∩D �= ∅ �= B ∩D. Let y0 ∈ A∩D and z0 ∈ B ∩D. There exists x0 ∈ X such
that D ⊆ V ∩ V −1(x0). Put W = {(x, y) ∈ X × X : �(x, y) < ε

2}. Obviously, V ∩
V −1(x0) ⊆ W ∩W−1(x0), which implies that �(x0, y0) < ε

2 , �(x0, z0) <
ε
2 , �(y0, x0) <

ε
2 and �(z0, x0) < ε

2 . All the inequalities taken together give that �∗(y0, x0) < ε
2 and

�∗(x0, z0) < ε
2 ; in consequence, �∗(y0, z0) < ε, but this is impossible because the

collection A is ε-discrete in (X, �∗). The contradiction obtained proves that each

collection En is discrete in (X, d). Since D is a cover of X , each member of A can be

expressed as the union of some members of
∞⋃

n=1
En, which concludes the proof. �

We shall make use of the following theorem which was proved in [11]:

Theorem 4. If H is a σ-discrete closed network for a metric space (X, d), then
there exists a compatible quasi-metric � on (X, d) such that H is a subbase for

(X, �∗).

Recall that a quasi-metric � on X is bicomplete if the metric �∗ is complete (cf.

e. g. [14]).

Lemma 5. Let X be a subspace of a complete metric space (Y, d). If A = {As :

s ∈ S} is a discrete in X collection of Fσ-subsets of X , then there exists a compatible

bicomplete quasi-metric � on (Y, d) such that dim(Y, �∗) = 0 and A ⊆ G (X, �∗).
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�����. Using similar arguments as in the proof of Lemma 2 of [6], we can

represent each set As in the form As =
∞⋃

n=1
An,s where An,s are closed sets in

(X, d) and each collection {An,s : s ∈ S} is metrically discrete in (X, d). Then each

collection An = {cl(Y,d)An,s : s ∈ S} is discrete in (Y, d). Choose a closed network

D =
∞⋃

m=1
Dm for (Y, d) such that the collections Dm are discrete in (Y, d). For

m, n ∈ �, define Hm,n = {D ∩ cl(Y,d)An,s : s ∈ S, D ∈ Dm & D ∩An,s �= ∅} ∪
{D ∈ Dm : D ∩ cl(Y,d)An,s = ∅ for each s ∈ S}. Then Hm,n are discrete collections

of closed subsets of (Y, d). It is easily seen that the collection H =
∞⋃

m,n=1
Hm,n

serves as a network for (Y, d). In view of Theorem 4, there exists a compatible

quasi-metric � on (Y, d) such that H is a subbase for (Y, �∗). By Theorem 2,
the space (Y, �∗) is completely metrizable; therefore, according to Theorem 2.1

of [14], we may assume that � is bicomplete. By Proposition 1, the collection
H consists of clopen subsets of (Y, �∗) and is σ-discrete in (Y, �∗). It follows

from [1, 7.3.2 & 7.3.6] that dim(Y, �∗) = 0. Since D is a network for (Y, d),
each set cl(Y,d)An,s is expressible as the union of some members of H ; therefore

A ⊆ G (X, �∗). �

In what follows, we shall regard 0 as a limit ordinal.

Theorem 6. Let X be a subspace of a complete metric space (Y, d) and let

α < ω1. If we are given a compatible quasi-metric � on X , then there exists

a compatible bicomplete quasi-metric �0 on (Y, d) such that dim(Y, �∗0) = 0 and

G (X, �∗) ⊆ G (X, �∗0); furthermore:

(6.1) if (X, d) ∈ Fα+1(Y, d), resp. (X, d) ∈ Gα+1(Y, d), then (X, �∗0) ∈ Gα(Y, �∗0),

resp. (X, �∗0) ∈ Fα(Y, �∗0);
(6.2) if α �= 0 is a limit ordinal and (X, d) ∈ Fα(Y, d), resp. (X, d) ∈ Gα(Y, d), then

(X, �∗0) ∈
[ ⋃

γ<α

Gγ(Y, �∗0)

]

δ
, resp. (X, �∗0) ∈

[ ⋃

γ<α

Fγ(Y, �∗0)

]

σ
;

(6.3) if (X, d) is absolutely analytic, so is (X, �∗0).

�����. Let B =
∞⋃

n=1
Bn serve as a base for (X, �∗) such that each collec-

tion Bn is metrically discrete in (X, �∗). In view of Lemma 3, for each n ∈ �,
there exist discrete in (X, d) collections Am,n of sets of type Fσ in (X, d) such

that each member of Bn is expressible as the union of some members of the

collection
∞⋃

m=1
Am,n. According to Lemma 5, there exist compatible bicomplete

quasi-metrics �m,n on (Y, d) such that dim(Y, �∗m,n) = 0 and Am,n ⊆ G (X, �∗m,n) for
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m, n ∈ �. Moreover, it was proved in [11] that, if (X, d) ∈ Fα+1(Y, d), resp.

(X, d) ∈ Gα+1(Y, d), then there exists a compatible quasi-metric �1 on (Y, d)
such that (X, �∗1) ∈ Gα(Y, �∗1), resp. (X, �∗1) ∈ Fα(Y, �∗1), and dim(Y, �∗1) = 0.
By Theorem 2, the space (Y, �∗1) is completely metrizable. In the light of The-

orem 2.1 of [14], we may demand that �1 be bicomplete. Let us arrange the

quasi-metrics �m,n into a sequence �2, �3, . . . Define �0 =
∞∑

n=1

1
2nmin{�n, 1} if

(X, d) ∈ Fα+1(Y, d) ∪ Gα+1(Y, d), and �0 =
∞∑

n=2

1
2nmin{�n, 1} otherwise. Without

any difficulties one can check that the quasi-metric �0 has all the properties required
in (6.1). The proof of (6.2) is similar. In order to get (6.3), it suffices to apply

Proposition 1. �

Theorem 7. An arbitrary compatible quasi-metric � on a metrizable space X

has the following properties:

(7.1) If 1 < α < ω1 (resp. 0 < α < ω1) and X is an absolute Fα-set (resp. Gα-set),

then (X, �∗) is an absolute Fα-set (resp. Gα-set).

(7.2) If X is absolutely analytic, so is (X, �∗).

�����. It follows from Theorem 2 that ifX is an absolute Gδ-set or, respectively,
Gδσ-set, so is (X, �∗).

Assume that 1 < α (resp. 2 < α) and that X is an absolute Fα-set (resp. Gα-set).

Let us regard X as a subspace of a complete metric space (Y, d). Take a compatible
bicomplete quasi-metric �0 on (Y, d) which satifies all the properties described in The-

orem 6. Put �1 = max{�∗, �0 �X×X}. Since G (X, �0) ⊆ G (X, �∗) ⊆ G (X, �∗0), the
function �1 is a compatible quasi-metric on (X, �∗) such that G (X, �∗1) = G (X, �∗0).

Without loss of generality, we may assume that �1 � 1. Denote by
(
X̃, �̃∗

)
the

metric completion of (X, �∗). It was proved in [9] that there exist an Fσδ sub-

set A of
(
X̃, �̃∗

)
and a compatible quasi-metric �2 on A, such that X ⊆ A and

�1(x, y) = �2(x, y) for all x, y ∈ X . Then (X, �∗1) is a subspace of the metric

space (A, �∗2). Since the metric �∗0 is compatible on (X, �∗1), while 1 < α (resp.
2 < α), to conclude that (X, �∗) is an absolute Fα-set (resp. Gα-set), it suffices

to observe that G (A, �∗2) ⊆ F1(A, �̃∗). Using similar arguments as above, we can
show (7.2). �

Let us mention that it was proved in [11] that if � is a compatible quasi-metric

on a metric space (X, d) such that (X, �∗) is an absolute Fα-set (resp. Gα-set), then
(X, d) is an absolute Gα+1-set (resp. Fα+1-set).
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The following lemma can be proved by transfinite induction:

Lemma 8. Let 0 < α < ω1 and let D be a collection of closed subsets of a

topological space X . If T is a topology on the set X such that D ⊆ T , then

Fα(D) =





[ ⋃
γ<α

Gγ(X, T )
]

δ
when α is even,

[ ⋃
γ<α

Gγ(X, T )
]

σ
when α is odd.

and

Gα(Dc) =





[ ⋃
γ<α

Fγ(X, T )
]

σ
when α is even,

[ ⋃
γ<α

Fγ(X, T )
]

δ
when α is odd.

Lemma 9. Let X be a topological space and let α < ω1. Then, for every discrete

collection A = {As : s ∈ S} ⊆ Fα(X), there exists a σ-discrete collection D of

closed subsets of X such that A ⊆ Fα(D).

�����. Our lemma holds for α = 0. Suppose that it holds for all γ < α where
α �= 0. Assume first that α is even. For each s ∈ S, there exist sets An,s ∈

⋃
γ<α

Fγ(X)

such that As =
∞⋂

n=1
An,s. The collections Bn = {An,s ∩ clX As : s ∈ S} are discrete

in X . For n ∈ � and γ < α, put Sn,γ = {s ∈ S : An,s ∈ Fγ(X)} and Cn,γ = {An,s ∩
clX As : s ∈ Sn,γ}. Under the inductive assumption, for any n ∈ � and γ < α, there

exists a σ-discrete collection Dn,γ of closed subsets of X such that Cn,γ ⊆ Fγ(Dn,γ).

The collection D =
∞⋃

n=1

⋃
γ<α

Dn,γ is σ-discrete and
∞⋃

n=1
Bn ⊆ ⋃

γ<α
Fγ(D). Since

As =
∞⋂

n=1
(An,s ∩ clX As), we have A ⊆ [ ⋃

γ<α
Fγ(D)]δ = Fα(D).

Now, assume that α = τ +m where τ is a limit ordinal and m ∈ � is odd. Then

As =
∞⋃

n=1
An,s where An,s ∈ Fτ+m−1(X). Put Bn = {An,s : s ∈ S} for n ∈ �. The

collections Bn are discrete, so there exist σ-discrete collections Dn of closed subsets

of X such that Bn ⊆ Fτ+m−1(Dn). The collection D =
∞⋃

n=1
Dn is σ-discrete and

has the property that
∞⋃

n=1
Bn ⊆ Fτ+m−1(D). Then A ⊆ Fτ+m(D). �

Lemma 10. Let X be a collectionwise normal space and let α < ω1. Then,

for every discrete collection A = {As : s ∈ S} ⊆ Gα(X), there exists a σ-discrete

collection D of open subsets of X such that A ⊆ Gα(D).
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�����. Let us modify a little the proof of Lemma 9. Namely, since the space

X is collectionwise normal, we can find a discrete collection {Us : s ∈ S} of open
subsets of X such that As ⊆ Us for s ∈ S. Assume that α = τ +m where τ is a

limit ordinal and m ∈ � is odd. Then As =
∞⋂

n=1
An,s for some An,s ∈ Gτ+m−1(X).

We consider discrete collections Bn = {An,s ∩ Us : s ∈ S} ⊆ Gτ+m−1(X) in order
to find σ-discrete collections Dn of open subsets of X such that Bn ⊆ Gτ+m−1(Dn).

Then A ⊆ Gτ+m(
∞⋃

n=1
Dn).

If α is a non-zero even ordinal, then As =
∞⋃

n=1
An,s for some An,s ∈

⋃
γ<α

Gγ(X).

Put Sn,γ = {s ∈ S : An,s ∈ Gγ(X)} and Cn,γ = {An,s : s ∈ Sn,γ} for n ∈ � and

γ < α . Making use of the inductive assumption, for any n ∈ � and γ < α, we can
find a σ-discrete collection Dn,γ of open subsets of X such that Cn,γ ⊆ Gγ(Dn,γ).

The proof will be completed if we put D =
∞⋃

n=1

⋃
γ<α

Dn,γ . �

Our next lemma is a consequence of Lemma 4 of [11].

Lemma 11. For every σ-discrete collection D of closed subsets of a metrizable

space X , there exists a compatible quasi-metric � on X such that D ⊆ G (X, �∗).

Lemma 12. For every σ-discrete collection D of open subsets of a metrizable

space X , there exists a compatible quasi-metric � on X such that D ⊆ F (X, �∗).

�����. Let D =
∞⋃

n=1
Dn ⊆ G (X) where each collection Dn is discrete in X . Take

any compatible metric d on X that is bounded by 1. For any n ∈ � and D ∈ Dn,
define

�n,D(x, y) =

{
d(x, y) + 1 if y /∈ D and x ∈ D,

d(x, y) otherwise.

Put �n = sup{�n,D : D ∈ Dn} and � =
∞∑

n=1

1
2n+1�n. It is obvious that �n are quasi-

metrics on X such that G (X, d) ⊆ G (X, �n). To show that G (X, �n) ⊆ G (X, d), for a

given x ∈ X , choose a neighbourhood U of x in (X, d) such that U meets at most one
member of Dn. Let D0 ∈ Dn be such that U∩D = ∅ for all D ∈ Dn\{D0}. If x ∈ D0,

we can find ε > 0 such that Bd(x, ε) ⊆ U ∩D0. If x /∈ D0, we choose ε > 0 such that
Bd(x, ε) ⊆ U . In both cases, we have �n,D(x, y) = d(x, y) for any y ∈ Bd(x, ε) and

D ∈ Dn; hence Bd(x, ε) ⊆ B�n(x, ε) and, in consequence, G (X, �n) ⊆ G (X, d). Now,
using similar arguments as in the proofs of Lemmas 2 and 4 given in [11], we can

show that � is a compatible with d quasi-metric on X such that all members of D

are clopen in (X, �∗). �
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Remark. In connection with Theorem 4, let us note that if D is a σ-discrete base

for a metric space (X, d), then the construction of a compatible quasi-metric � on
(X, d) such that D ⊆ F (X, �∗) described in Lemma 12 need not lead to a quasi-
metric � such that D is a subbase for (X, �∗) (cf. [11, construction of Lemma 4]).

Since σ-discretely decomposable families are of fundamental importance in descrip-
tive set theory, it is worthwhile to investigate deeper their behaviour with respect to

compatible quasi-metrics. Although not all of the properties of σ-discretely decom-
posable families described below are applied in this paper, we include them because

they seem to be of independent interest.
The following theorem is a generalization of Proposition 9 of [11].

Theorem 13. For every ordinal α < ω1 and every σ-discrete collection A of

subsets of a metric space (X, d), the following conditions are equivalent:

(13.1) A ⊆ Fα+1(X, d), resp. A ⊆ Gα+1(X, d).

(13.2) There exists a compatible quasi-metric � on (X, d) such that A ⊆ Gα(X, �∗),
resp. A ⊆ Fα(X, �∗).

(13.3) There exists a compatible quasi-metric � on (X, d) such that A ⊆ Gα(X, �∗),
resp. A ⊆ Fα(X, �∗), dim(X, �∗) = 0 and, moreover, if (X, d) is an absolute

Fσδ-set, we may demand that � be bicomplete.

Furthermore, if A ⊆ Fα+1(X, d) ∩ Gα+1(X, d), the quasi-metric � appearing in

(13.3) can be constructed in such a way that A ⊆ Fα(X, �∗) ∩ Gα(X, �∗).

�����. Assume (13.1). It follows from Lemmas 9 and 10 that there exists a σ-
discrete collection D of closed (resp. open) subsets of (X, d) such thatA ⊆ Fα+1(D),

resp. A ⊆ Gα+1(D). According to Lemmas 11 and 12, there exists a compatible
quasi-metric � on (X, d) such that D ⊆ G (X, �∗), resp. D ⊆ F (X, �∗). Now, making
use of Lemma 8, we obtain that (13.1) implies (13.2).

The implication (13.2)⇒ (13.3) is a consequence of Theorem 6 and [14, Thm. 2.1].
That (13.3) implies (13.1) follows from Proposition 1.

Suppose now that A ⊆ Fα+1(X, d) ∩ Gα+1(X, d). We can find compatible quasi-
metrics �1, �2 on X such that A ⊆ Gα(X, �∗1) ∩ Fα(X, �∗2). If we put � = �1 + �2,

then A ⊆ Fα(X, �∗) ∩ Gα(X, �∗). �

Theorem 14. For every ordinal α < ω1 and every collection A of subsets of a

metric space (X, d), the following conditions are equivalent:

(14.1) A is σ-discretely decomposable in (X, d) into members of Fα+1(X, d), resp.
Gα+1(X, d).

(14.2) There exists a compatible quasi-metric � on (X, d) such that A is σ-discretely
decomposable in (X, �∗) into members of Gα(X, �∗), resp. Fα(X, �∗).
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(14.3) There exists a compatible quasi-metric � on (X, d) such that A is σ-dis-

cretely decomposable in (X, �∗) into members of Gα(X, �∗), resp. Fα(X, �∗),
dim(X, �∗) = 0 and, moreover, if (X, d) is an absolute Fσδ-set, we may de-

mand that � be bicomplete.

Furthermore, if A is σ-discretely decomposable in (X, d) into Borel sets of am-

biguous class α+1 in (X, d), we can construct a compatible quasi-metric � on (X, d)
such that A is σ-discretely decomposable in (X, �∗) into Borel sets of ambiguous

class α in (X, �∗) and � has all other properties described in (14.3).

�����. The implications (14.1)=⇒ (14.2)=⇒ (14.3) follow from Theorem 13. As-
sume (14.3). Using the same technique as in [6, proof of Lemma 2], we can find a

sequence of collections Dn ⊆ Gα(X, �∗), resp. Dn ⊆ Fα(X, �∗) that are metrically
discrete in (X, �∗), such that each member of A is the union of some members of
∞⋃

n=1
Dn. According to Lemma 3, each collection Dn is σ-discretely decomposable in

(X, d) into members of Fα+1(X, d), resp. Gα+1(X, d). This shows that (14.3) implies

(14.1).

3. Making a mapping continuous

Let us pass to a characterization of those mappings f from a metrizable space X

to a topological space Y for which there exists a compatible quasi-metric � on X

such that f : (X, �∗)→ Y is continuous. �

Definitions. Let X , Y be topological spaces and let f : X → Y . A collectionB

of subsets of X is called a base for the mapping f if, for every open set V ⊆ Y , the
inverse image f−1(V ) is the union of some sets fromB. If, in addition, the collection

B is σ-discrete, we say that B is a σ-discrete (in X) base for f .
The mapping f is called σ-discrete if f has a σ-discrete base (cf. e. g. [6] and [7]).

Theorem 15. For a mapping f from a metric space (X, d) to a topological
space Y , the following conditions are equivalent:

(15.1) The mapping f has a σ-discrete in (X, d) base consisting of Fσ-sets of (X, d).
(15.2) There exists a compatible quasi-metric � on (X, d) such that f : (X, �∗)→ Y

is continuous.

(15.3) There exists a compatible quasi-metric � on (X, d) such that dim(X, �∗) = 0

and f : (X, �∗)→ Y is continuous; furthermore, if (X, d) is an absolute Fσδ-

set, we may demand that � be bicomplete.

�����. To show that (15.2) is a consequence of (15.1), it suffices to apply The-
orem 13. That (15.2) implies (15.3) follows from Theorem 6 and [14, Thm. 2.1]. If �
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is a compatible quasi-metric on (X, d) such that f : (X, �∗)→ Y is continuous, then

a σ-metrically discrete base B for the metric space (X, �∗) is a base for f . It follows
from Lemma 3 that B is σ-discretely decomposable in (X, d) into Fσ-sets of (X, d);
hence (15.3) implies (15.1), which completes the proof. �

Let us recall that a mapping f from a topological space X to a topological space Y

is of Borel class α, α < ω1, if the inverse image f−1(V ) of every open set V ⊆ Y is

of additive class α in X .

In the light of Theorem 15, if for a mapping f from a metric space (X, d) to a

topological space Y there exists a compatible quasi-metric � on (X, d) such that
f : (X, �∗) → Y is continuous, then f : (X, d) → Y is a σ-discrete mapping of

Borel class 1. We do not know if the σ-discreteness of a mapping f of Borel class
1 from a metric space (X, d) to a topological space Y is a sufficient condition in

order to find a compatible quasi-metric � on (X, d) such that f : (X, �∗) → Y is
continuous; however, if the space Y is also metrizable, we can apply Hansell’s result

of [6; 3.4, Lemma 10] to deduce the following corollary to Theorem 15:

Corollary 16. For a mapping f from a metric space (X, d) to a metrizable

space Y , conditions (15.2) and (15.3) are equivalent to the following:

(16.1) f : (X, d)→ Y is a σ-discrete mapping of Borel class 1.

Theorem 3 of [6] asserts that every Borel mapping from an absolutely analytic

metrizable space X to a metrizable space Y is σ-discrete; accordingly, we can state
the following:

Corollary 17. For a mapping f from an absolutely analytic metric space (X, d)

to a metrizable space Y , conditions (15.2) and (15.3) are equivalent to the following:

(17.1) f : (X, d)→ Y is a mapping of Borel class 1.

Let us say that a collection A of subsets of a metrizable space X is analytic-

additive if, for each subcollection A0 of A , the union A0 =
⋃{A : A ∈ A0} can be

obtained by applying the Suslin operation to closed subsets of X , i. e. A0 can be

represented in the form

A0 =
⋃

τ∈�ω

∞⋂

n=1

F (τ | n)

where F (τ | n) are closed subsets of X for τ ∈ �
ω and n ∈ �.

Fleissner’s Proposition P asserts that every point-finite analytic-additive collection

in a metrizable space is σ-discretely decomposable (cf. [2]). It is not clear whether
Proposition P is consistent with ZFC; however, it was proved in [3] that the Product
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Measure Extension Axiom (PMEA) implies Proposition P. On the other hand, if,

for instance, a Q-space exists (i. e. a metrizable space X which cannot be represented
as the countable union of closed discrete subspaces but each subset of which is of
type Fσ in X), then there exists a non-σ-discrete mapping between metrizable spaces

which is of Borel class 1 (cf. [11]); therefore the existence of a Q-space implies that
Proposition P is false. It seems unknown whether the existence of a non-σ-discrete

mapping between metrizable spaces which is of Borel class 1 is equivalent to the exis-
tence of a Q-space. Some other results related to the above-mentioned set-theoretic

problems can be found, e. g. in [2], [3], [5] and [11].
It is evident that if B is a σ-discrete base for a metrizable space Y and if f : X →

Y , then the collection {f−1(B) : B ∈ B} forms a base for f which is the countable
union of point-finite subcollections; therefore, with Proposition P in hand, we can

establish the following:

Corollary 18. If we assume Proposition P, then, for every mapping f from a

metric space (X, d) to a metrizable space Y , conditions (15.2), (15.3) and (17.1) are
all equivalent.

Our investigations lead us in a natural way to the problem of how and when it
is possible to lower the Borel class of a σ-discrete Borel map f if one replaces the

original topology on the domain X of f by the topology determined by the metric
�∗ where � is a compatible quasi-metric on X . Let us devote our next section to this

question.

4. Lowering the Borel classes of σ-discrete Borel maps

Let α < ω1. For topological spaces X and Y , denote by Bα(X, Y ) the collection
of all mappings f : X → Y of Borel class α. Let the symbol Bσ−d

α (X, Y ) stand for

the collection of all those mappings f : X → Y which have σ-discrete bases in X

consisting of sets of additive class α.
It follows from [6; 3.4, Lemma 10] that if X , Y are metrizable spaces, then the

class Bσ−d
α (X, Y ) coincides with the class of all σ-discrete mappings which are in

Bα(X, Y ).

Theorem 19. For every ordinal α < ω1 and every mapping f from a metric space

(X, d) to a topological space Y , the following conditions are equivalent:

(19.1) f ∈ Bσ−d
α+1

(
(X, d), Y

)
.

(19.2) There exists a compatible quasi-metric � on (X, d) such that

f ∈ Bσ−d
α

(
(X, �∗), Y

)
.
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(19.3) There exists a compatible quasi-metric � on (X, d) such that

f ∈ Bσ−d
α

(
(X, �∗), Y

)
,

dim(X, �∗) = 0 and, in addition, if (X, d) is an absolute Fσδ-set, we may

demand that � be bicomplete.

�����. It suffices to apply Theorem 14. �

Remark. Let X and Y be metrizable spaces and let α < ω1. Theorem 15

describes a relatively simple natural necessary and sufficient condition for a mapping
f ∈B1(X, Y ) to find a compatible quasi-metric � onX such that f ∈B0

(
(X, �∗), Y

)
,

while Theorem 19 gives us only a sufficient condition for f ∈ Bα+1(X, Y ) in order to
exist a compatible quasi-metric � on X such that f ∈ Bα

(
(X, �∗), Y

)
. The following

problem seems interesting:

Problem. Let 0 < α < ω1. If, for a mapping f ∈ Bα+1
(
(X, d), Y

)
\

Bα

(
(X, d), Y

)
, there exists a compatible quasi-metric � on the metric space (X, d)

such that f ∈ Bα

(
(X, �∗), Y

)
, must f be necessarily σ-discrete?

Let us turn our attention to those Borel mappings between metrizable spaces
which can be represented analytically. Namely, for metrizable spaces X and Y ,

put B∗
1(X, Y ) = Bσ−d

1 (X, Y ) and suppose that, for a countable ordinal α > 1,
we have already defined the classes B∗

γ(X, Y ) where 1 � γ < α. Then B∗
α(X, Y )

denotes the collection of all those mappings f : X → Y which are the pointwise
limits of convergent sequences of mappings belonging to

⋃
γ<α

B∗
γ(X, Y ). For conve-

nience, denote by B∗
0(X, Y ) the collection of all continuous mappings from X to Y .

Obviously, in general, not all mappings from B∗
1(X, Y ) are the pointwise limits of

convergent sequences of continuous functions; however, for every ordinal α < ω1,
we have B∗

α(X, Y ) ⊆ Bα(X, Y ) if α is finite, while B∗
α(X, Y ) ⊆ Bα+1(X, Y ) if

α is infinite. Hansell proved in [7] that, for α < ω1, the following inclusions hold:
Bσ−d

α (X, Y ) ⊆ B∗
α(X, Y ) if α is finite, whileBσ−d

α+1(X, Y ) ⊆ B∗
α(X, Y ) if α is infinite.

Since it seems still unknown whether the pointwise limit of a convergent sequence of
σ-discrete mappings is necessarily σ-discrete (cf. [7, p. 210] and [15, pp. 476–477]) let

us state a lemma which will allow us to replace the last two inclusions by equalities.
This lemma might be hidden somewhere in the literature, but we are unable to locate

it, so we shall include its proof for completeness.

Lemma 20. If X , Y are metrizable spaces and a mapping f : X → Y is the

pointwise limit of a sequence 〈fn〉n∈� of σ-discrete Borel mappings fn : X → Y ,

then f is σ-discrete.
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�����. Let dX and dY be compatible metrics on the spaces X and Y , respec-

tively. Denote by (X̃, d̃X) and (Ỹ , d̃Y ) the completions of (X, dX) and (Y, dY ), re-
spectively. Choose αn < ω1 such that fn ∈ Bαn+1(X, Y ) for n ∈ �. By Theorem 9
of [7], for each n ∈ �, there exist a set An of multiplicative class αn + 2 in (X̃, d̃X)

and a mapping f̃n ∈ Bαn+1
(
An, (Ỹ , d̃Y )

)
, such that X ⊆ An and f̃n(x) = fn(x) for

x ∈ X . Put A =
∞⋂

n=1
An and, for n, m, k ∈ �, define

Cn,m,k =
{
x ∈ A : d̃Y

(
f̃n(x), f̃n+m(x)

)
<
1
k

}
.

The set A being absolutely Borel, it follows from Theorem 3 of [6] that all the
mappings gn = f̃n �A are σ-discrete in A. Therefore, according to Theorem 4 of [6],

the diagonal mappings gn � gn+m are Borel in A and, in consequence, the sets
Cn,m,k are Borel in A. This implies that the set

B =
∞⋂

k=1

∞⋃

n=1

∞⋂

m=1

Cn,m,k

is absolutely Borel. Clearly, X ⊆ B. If x ∈ B, then
〈
gn(x)

〉
n∈� is a Cauchy sequence

in (Ỹ , d̃Y ), so that it converges in (Ỹ , d̃Y ) to some point g(x) ∈ Ỹ . In this way, we

obtain a Borel mapping g : (B, d̃X) → (Ỹ , d̃Y ) such that g(x) = f(x) for x ∈ X

(cf. [7, proof of Theorem 9]). In view of Theorem 3 of [6], the mapping g is σ-

discrete, which yields that f is σ-discrete. �

Corollary 21. Let X and Y be metrizable spaces. For every ordinal α < ω1, we

have: B∗
α(X, Y ) = Bσ−d

α (X, Y ) if α is finite, and B∗
α(X, Y ) = Bσ−d

α+1(X, Y ) if α is

infinite.

As an immediate consequence of Theorem 19 and Corollary 21, we can state the
following:

Theorem 22. For every ordinal α < ω1 and every mapping f from a metric space

(X, d) to a metrizable space Y , the following conditions are equivalent:

(22.1) f ∈ B∗
α+1

(
(X, d), Y

)
.

(22.2) There exists a compatible quasi-metric � on (X, d) such that

f ∈ B∗
α

(
(X, �∗), Y

)
.

(22.3) There exists a compatible quasi-metric � on (X, d) such that

f ∈ B∗
α

(
(X, �∗), Y

)
,
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dim(X, �∗) = 0 and, in addition, if (X, d) is an absolute Fσδ-set, we may

demand that � be bicomplete.

Corollary 23. For every ordinal α < ω1 and every mapping f from an absolutely

analytic metric space (X, d) to a metrizable space Y , the following conditions are

equivalent:

(23.1) f ∈ Bα+1
(
(X, d), Y

)
.

(23.2) There exists a compatible quasi-metric � on (X, d) such that

f ∈ Bα

(
(X, �∗), Y

)
.

(23.3) There exists a compatible quasi-metric � on (X, d) such that

f ∈ Bα

(
(X, �∗), Y

)
,

dim(X, �∗) = 0 and, in addition, if (X, d) is an absolute Fσδ-set, we may

demand that � be bicomplete.

Corollary 24. If we assume Proposition P, then, for every ordinal α < ω1 and

every mapping f from a metric space (X, d) to a metrizable space Y , conditions

(23.1)–(23.3) are equivalent.

Finally, let us note that, in conditions (14.3), (15.3), (19.3), (22.3) and (23.3) we
may always require of � to share all the properties of �0 described in Theorem 6.
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Poland, e-mail: ewajch@krysia.uni.lodz.pl.

455


		webmaster@dml.cz
	2020-07-03T11:43:07+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




