Previous |  Up |  Next

Article

Keywords:
$D$-posets; extension of measures; observables in quantum mechanics
Summary:
A variant of Alexandrov theorem is proved stating that a compact, subadditive $D$-poset valued mapping is continuous. Then the measure extension theorem is proved for MV-algebra valued measures.
References:
[1] Birkhoff, G.: Lattice theory. Providence (1967). MR 0227053 | Zbl 0153.02501
[2] Chang, C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[3] Chovanec, F.: States and observables on MV algebras. Tatra Mountains Math. Publ. 3 (1993), 55–63. MR 1278519 | Zbl 0799.03074
[4] Chovanec, F., Jurečková, M.: Law of large numbers on $D$-posets of fuzzy sets. Tatra Mountains Math. Publ. 1 (1992), 15–18. MR 1230457
[5] Chovanec, F., Kôpka, F.: On a representation of observables in $D$-posets of fuzzy sets. Tatra Mountains Math. Publ. 1 (1992), 19–24. MR 1230458
[6] Dvurečenskij, A., Pulmannová, S.: Difference posets, effects and quantum measurements. Int. J. Theor. Phys. 33 (1994), 819–850. DOI 10.1007/BF00672820 | MR 1286161
[7] Dvurečenskij, A., Riečan, B.: Decomposition of measures on orthoalgebras and difference posets. Int. J. Theor. Phys. 33 (1994), 1403–1418. DOI 10.1007/BF00670684
[8] Foulis, D. J., Greechie, R. J., Rüttimann, G. T.: Filters and supports in orthoalgebras. Int. J. Theor. Physics 31 (1992), 789–807. DOI 10.1007/BF00678545 | MR 1162623
[9] Giuntini, R., Greling, H.: Toward a formal language for unsharp properties. Foundations of Physics 20 (1989), 931–945. DOI 10.1007/BF01889307 | MR 1013913
[10] Jakubík, J.: On complete MV-algebras. Czechoslovak Math. J. 45 (1995), 473–480. MR 1344513
[11] Jurečková, M.: The measure extension theorem on MV $\sigma $-algebras. Tatra Mountains Math. Publ. 6 (1995), 55–61. MR 1363983
[12] Kôpka, F., Chovanec, F.: $D$-posets. Math. Slovaca 44 (1994), 21–34. MR 1290269
[13] Mesiar, R.: Fuzzy difference posets and MV-algebras. Proc. IPMU 94, Paris 1994, B. Bouchon–Meunier and R. R. Jager (eds.), 1994, 208–212.
[14] Mundici, D.: Interpretation of $AFC^\ast $-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
[15] Riečan, B.: On the lattice group valued measures. Čas. pěst. mat. 101 (1976), 343–349. MR 0499072
[16] Riečan, B.: On measures and integrals with values in ordered groups. Math. Slovaca 33 (1983), 153–163. MR 0699085
[17] Riečan, B.: On the convergence of observables in $D$-posets. Tatra Mountains Math. Publ. 12 (1997), 7–12. MR 1607147
[18] Volauf, P.: On various notions of regularity in ordered spaces. Math. Slovaca 35 (1985), 127–130. MR 0795006 | Zbl 0597.28017
[19] Volauf, P.: Alexandroff and Kolmogorov consistency theorem for measures with values in partially ordered groups. Tatra Mountains Math. Publ. 3 (1993), 237–244. MR 1278538
[20] Vonkomerová, M., Vrábelová, M.: On the extension of positive continuous operators. Math. Slovaca 31 (1981), 251–262. MR 0621916
[21] Wright, J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier Grenoble 21 (1971), 65–85. DOI 10.5802/aif.393 | MR 0330411 | Zbl 0215.48101
Partner of
EuDML logo