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Abstract. A variant of Alexandrov theorem is proved stating that a compact, subadditive
D-poset valued mapping is continuous. Then the measure extension theorem is proved for
MV-algebra valued measures.
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0. Introduction

The notion of a D-poset was introduced in a connection with quantum mechanical

models ([5], [6], [7], [9], [12], [13]). If H is a D-poset, then a state is a morphism
from H to the unit interval, an observable is a morphism from the Borel σ-algebra

B(�) to H . An observable x : B(�) → H can be regarded as an H-valued measure.
For constructions of some observables it is useful to construct them first on inter-

vals and then extend them to the family of all Borel sets. Therefore we first prove
a variant of the Alexandrov theorem (with values in D-posets) and then a measure

extension theorem (with values in MV-algebras).
Of course, the results mentioned are formulated and proved only for some special

cases of D-posets.
Our variant of the Alexandrov theorem works in the so-called regular D-posets

([15]). Recall that every l-group as well as any MV-algebra is regular in the mentioned
sense ([18] and Section 3). Our extension theorem works in the so-called weakly σ-

distributive MV algebras. Of course in the case of Riesz spaces H the condition is
necessary and sufficient for extendability of every H-valued measure from a ring to

the generated σ-ring ([21]).
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1. Preliminaries

A D-poset is a partially ordered set with the greatest element 1 and the least

element 0 and a partial binary operation—such that a− b is defined if b � a, which
satisfies the following conditions:

(i) If b � a, then a− b � a and a− (a− b) = b.

(ii) If a � b � c, then c− b � c− a and (c− a)− (c− b) = b− a.

A D-poset is called a D-σ-poset, if bi � ai, ai ↗ a, bi ↘ b implies ai − bi ↗ a− b.

Let R be an algebra of subsets of a set Ω, let H be a D-poset. By an H-valued

measure on R we shall understand a mapping µ : R → H satisfying the following
conditions:

(i) µ(∅) = 0.
(ii) If A, B ∈ R and A ⊂ B, then µ(B \A) = µ(B)− µ(A).

(iii) If an ∈ R, An ⊂ An+1 ⊂ A (kn = 1, 2, . . .), A ∈ R and A =
∞⋃

n=1
An, then

µ(An)↗ µ(A).

An observable is a measure x : B(�) → H defined on the σ-algebra of all Borel

subsets of � such that x(�) = 1.

Since a � 1 for all a ∈ H , 1− a exists. We shall denote a⊥ = 1− a. Two elements

a1, a2 are said to be orthogonal, if a1 � a⊥2 (or equivalently a2 � a⊥1 ). For orthogonal
elements the sum a1 + a2 can be defined by the formula

a1 + a2 = 1− ((1− a1)− a2) ,

or equivalently by the formula

a1 + a2 = 1− ((1− a2)− a1) .

The notion of orthogonality can be extended to an arbitrary finite collection of

elements. A family P of n+1 elements is orthogonal, if every its subfamily containing
at most n elements is orthogonal and every element of P is orthogonal to the sum

of the remaining elements. If a1, . . . , an are orthogonal, then we define again by
induction

a1 + . . .+ an = (a1 + . . .+ an−1) + an.

We shall prove the following simple assertion.

Proposition 1. If a1 � a2 � . . . � an � an+1, then the sum (a1 − a2) +
(a2 − a3) + . . .+ (an − an+1) = a1 − an+1 exists.
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�����. Assume first that c � b � a. Then we shall prove that a− b and b− c

are orthogonal and

(a− b) + (b − c) = a− c.

Indeed,

b− c = (a− c)− (a− b) � 1− (a− b)

so that b− c and a− b are orthogonal. Moreover,

(a− b) + (b− c) = 1− ((1− (a− b))− (b− c))

= 1− ((1− (a− b))− ((a− c)− (a− b)))

= 1− (1− (a− c)) = a− c.

Namely, f � e � d implies 1− d � 1− e � 1− f , hence

(d− f)− (e− f) = ((1− f)− (1− d)) − ((1− f)− (1− e))

= (1 − e)− (1− d) = d− e.

The assertion can be now proved by induction. �

If we now consider an H-valued measure µ : R → H and a finite chain A1 ⊃ A2 ⊃
An ⊃ An+1 of sets of R, then µ(A1) � µ(A2) � . . . � µ(An) � µ(An+1), the sum

(µ(A1)− µ(A2)) + (µ(A1)− µ(A3)) + . . .+ (µ(An)− µ(An+1))

= µ(A1 \A2) + µ(A2 \A3) + . . .+ µ(An \An+1)

exists and equals µ(A1) − µ(An+1) = µ(A1 \ An+1). Similarly, if B1, . . . , Bn are
pairwise disjoint sets of R and we put

An+1 = ∅, An = Bn, An−1 = Bn ∪Bn−1, . . . , A1 = B1 ∪B2 ∪ . . . ∪Bn,

then A1 ⊃ A2 ⊃ . . . ⊃ An+1, Bi = Ai \ Ai+1 (i = 1, . . . , n), A1 \ An+1 =
n⋃

i=1
Bi,

hence

µ(B1) + µ(B2) + . . .+ µ(Bn) = µ

( n⋃

i=1

Bi

)
.
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2. Alexandrov theorem

We will say that a D-poset H is weakly regular ([15]), if for any bounded double
sequence (aij)i,j such that aij ↘ 0 (j → ∞, i = 1, 2, . . .) and every a > 0 there are

i1 < i2 < i3 < . . . such that
a � b1 + . . .+ bn

holds for no n and no b1 � a1i1 , b2 � a2i2 , . . ., bn � anin with existing sum b1+. . .+bn.
It is interesting that every commutative lattice ordered group is weakly regular

([18]).
We will say that a mapping λ : R → H is subadditive, if

λ(A) � λ(A1) + λ(A2) + . . .+ λ(An)

whenever A ⊂ A1 ∪A2 ∪ . . . ∪An and A1, . . . , An are pairwise disjoint.
A family C of subsets of Ω is called compact, if for every sequence (Cn)n ⊂ C

(
∀n :

n⋂

i=1

Ci �= ∅
)
=⇒

∞⋂

i=1

Ci �= ∅.

A mapping λ : R → H is called compact, if there exists a compact family C such
that for every A ∈ R there are Bj ∈ R, Cj ∈ C , Bj ⊂ Cj ⊂ A (j = 1, 2, . . .) and

λ(A \Bj)↘ 0 (j →∞).
A mapping λ : R → H is upper continuous in ∅, if λ(An)↘ 0 whenever An ↘ ∅.
A D-poset H is called monotonously σ-complete, if every decreasing sequence

(an)n in H has the greatest lower bound
∞∧

n=1
an and every increasing sequence (bn)n

in H has the least upper bound
∞∨

n=1
bn.

Theorem 1 (Alexandrov). Let H be a weakly regular, monotonously σ-complete

D-poset. Let λ : R → H be subadditive and compact. Then λ is upper continuous

in ∅.
�����. Let An ↘ ∅. We want to prove λ(An) ↘ 0. Since (λ(An))n is

decreasing, there exists a =
∞∧

n=1
λ(An). Assuming a > 0, we obtain a contradiction.

Since λ is compact, for every i there are Ci
j ∈ C and Bi

j ∈ R such that Bi
j ⊂ Ci

j ⊂
Ai and

aij = λ(Ai \Bi
j)↘ 0 (j →∞, i = 1, 2, . . .).

Since H is weakly regular, there are i1 < i2 < . . . such that

a � b1 + . . .+ bn
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for no n and no b1, . . . , bn with the corresponding properties. Put

Bn = B1i1 ∩B2i2 ∩ . . . ∩Bn
in

, Cn = C1i1 ∩ C2i2 ∩ . . . ∩ Cn
in

.

We want to prove that Cn �= ∅ (n = 1, 2, . . .). Indirectly, let Cn = ∅ for some n.
Then Bn = ∅ and

a � λ(An) = λ(An \Bn)

= λ ((A1 \Bn) ∪ (A2 \A1 \Bn) ∪ . . . ∪ (An \An−1 \Bn))

� λ
(
(A1 \B1i1) ∪ (A2 \A1 \B2i2) ∪ . . . ∪ (An \An−1 \Bn

in
)
)

� λ(A1 \B1i1) + λ(A2 \A1 \B2i2) + . . .+ λ(An \An−1 \Bn
in
).

Put b1 = λ(A1 \B1i1), b2 = λ(A2 \A1 \B2i2), . . ., bn = λ(An \An−1 \Bn
in
).

Then b1 = a1i1 , b2 � a2i2 , . . ., bn � anin and b1 + . . .+ bn exists, hence

a � b1 + . . .+ bn,

which is impossible. We have obtained a contradiction, hence Cn �= ∅ for all n.
Since Cn ∈ C , Cn �= ∅, Cn ⊃ Cn+1 (n = 1, 2, . . .) and C is a compact family, we

obtain
∞⋂

n=1
Cn �= ∅. But

∞⋂
n−1

Cn ⊂
∞⋂

n=1
An = ∅, which contradicts the assumption

a > 0. Therefore 0 = a =
∞∧

n=1
λ(An). �

As an example of using the above theorem we present the following result con-

cerning the Lebesgue-Stieltjes measure.

Theorem 2. Let H be a weakly regular, monotonously σ-complete Dσ-poset.

Let F : � → H be a mapping satisfying the following conditions:

(i) F is increasing,

(ii)
∞∧

n=1
F (−n) = 0,

(iii)
∞∨

n=1
F (tn) = F (t) for every increasing sequence (tn)n such that tn ↗ t.

Let R be the ring generated by the family of all intervals 〈a, b), a, b ∈ �, a < b.

Then there is exactly one measure λF : R → H such that

λF (〈a, b)) = F (b)− F (a)

whenever a, b ∈ �, a < b.
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�����. If 〈a1, b1), . . . , 〈an, bn) are pairwise disjoint, then we denote

λF

( n⋃

i=1

〈ai, bi)

)
= (F (b1)− F (a1)) + (F (b2)− F (a2)) + . . .+ (F (bn)− F (an)) .

By Proposition 1 the above sum exists and does not depend on the choice of 〈ai, bi).

By the definition of a D-poset the additivity of λF follows.
Let C be the family of all compact subsets of the set � of real numbers. Evidently

C is a compact family. Moreover, if A ∈ �, A =
n⋃

i=1
〈ai, bi), 〈ai, bi) pairwise disjoint,

put

Bj =
n⋃

i=1

〈
ai, bi −

2
j

)
, Cj =

n⋃

i=1

〈
ai, bi −

1
j

〉
.

Then Cj ∈ C , Bj ∈ R, Bj ⊂ Cj ⊂ A and

A \Bj =
n⋃

i=1

〈
bi −

1
j
, bi

)
,

λF (A \Bj) =

(
F (b1)− F

(
b1 −

2
j

))
+ . . .+

(
F (bn)− F

(
bn −

2
j

))

for sufficiently large j. Since H is a Dσ-poset and F satisfies (iii), we obtain F (bi)−
F (bi − 2

j )↘ 0 (j →∞, i = 1, . . . , n) and

λF (A \Bj)↘ 0.

By Theorem 1, λF is upper continuous in ∅. Finally, the additivity and the upper
continuity in ∅ imply the continuity of λF . �

3. Measure extension theorem

In this section we will assume that H is an MV σ-algebra ([2], [3], [10], [11],

[13], [14]). It is known that H is a Dσ-lattice ([3]). An MV σ-algebra H is called
weakly σ-distributive, if for any double sequence (aij)i,j such that aij ↘ 0 (j →∞,
i = 1, 2, . . .), we have

∧

ϕ∈NN

∞∨

i=1

aiϕ(i) = 0.

Theorem 3. Let R be a ring of subsets of a set Ω, µ : R → H a measure.

Let H be a weakly σ-distributive MV algebra. Then there is exactly one measure

µ : σ(R)→ H extending µ.
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�����. The main tools are the measure extension theorem for group-valued

measures from [16] and the Mundici representation theorem from [14]. For every
MV-algebra H there is an abelian lattice ordered group G with a strong unit u such
that H = 〈0, u〉, where

a⊕ b = (a+ b) ∧ u, a∗ = u− a, 1 = u, a� b = (a∗ ⊕ b∗)∗.

The measure µ : R → H ⊂ G can be regarded as a measure with values in G. We

shall prove that G satisfies the following assumptions of the group valued measure
extension theorem:

(i) G is σ-complete,

(ii) G is weakly σ-distributive.

The σ-completeness of G follows by the σ-completness of 〈0, u〉. It can be proved
by the same method as it was done in [10], Lemma 1.1.

We shall prove the weak σ-distributivity of G. Let (aij)i,j be a bounded sequence

of G, aij ↘ 0 (j →∞, i = 1, 2, . . .). Put

bij = u ∧ aij .

Then

bij ↘ 0 (j →∞, i = 1, 2, . . .).

By the weak σ-distributivity of H we obtain

∧

ϕ∈NN

∞∨

i=1

biϕ(i) = 0.

Since G is a distributive lattice,

0 =
∧

ϕ∈NN

∞∨

i=1

biϕ(i) = u ∧
( ∧

ϕ∈NN

∞∨

i=1

aiϕ(i)

)
.

Put

v =
∧

ϕ∈NN

∞∨

i=1

aiϕ(i),

hence

u ∧ v = 0.
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Since every strong unit in G is a weak unit ([1], Chapter XIII, §11, Lemma 4), the

relation u ∧ v = 0 implies v = 0, hence

∧

ϕ∈NN

∞∨

i=1

aiϕ(i) = 0.

By [16] there exists a measure µ : σ(R) → G extending µ. Since µ(A) � u for

all A ∈ R, µ(B) � u for all B ∈ σ(�). Indeed, for every B ∈ σ(�) there exists a

sequence (An) ⊂ R such that An ⊂ An+1 (n = 1, 2, . . .) and B ⊂
∞⋃

n=1
An. Therefore

µ(B) � µ
( ∞⋃

n=1
An

)
=

∞∨
n=1

µ(An) =
∞∨

n=1
µ(An) � u.

Since µ(B) � u for every B ∈ σ(�), the mapping µ can be regarded as a mapping
µ : σ(R)→ 〈0, u〉 = H . The mapping µ is additive and continuous, hence µ : (R)→
H is a measure extending µ.
If ν : σ(R) → H is a measure extending µ, then K =

{
A ∈ σ(R); µ(A) =

ν(A)
}
⊃ R and K is a monotone family. Therefore K ⊃ M (R) = σ(R), hence

µ(A) = ν(A) for every A ∈ σ(R). �

Theorem 4. Let H be a weakly σ-distributive MV σ-algebra. Let F : � → H

be a mapping satisfying the following conditions:

(i) F is increasing,

(ii)
∞∧

n=1
F (−n) = 0,

(iii)
∞∨

n=1
F (n) = 1,

(iv)
∞∨

n=1
F (tn) = F (t) for every increasing sequence (tn)n such that tn ↗ t.

Then there exists exactly one observable x : B(�) → H such that x ((−∞, t)) = F (t)

for every t ∈ �.

�����. First we prove that every MV algebra considered as a D-poset is weakly

regular. Let aij ↘ 0 (j → ∞, i = 1, 2, . . .), aij ∈ H , a ∈ H , a > 0. Let G be a
group and u a strong unit of G such that H = 〈0, u〉. Since every abelian l-group G

is weakly regular ([18]), there are i1 < i2 < i3 < . . . such that

a � a1i1 + . . .+ anin

does not hold for any n. Hence, if b1, . . . , bn ∈ H are such that b1 + . . .+ bn exists

and b1 � a1i1 , . . ., bn � anin , then a � b1 + . . . + bn implies a � a1i1 + . . . + anin ,
which is impossible.
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Now by Theorem 2 there is exactly one measure

λF : R → H such that

λF (〈a, b)) = F (b)− F (a)

whenever a, b ∈ �, a < b. Then also

λF ((−∞, t)) = λF

( ∞⋃

n=1

〈t− n, t)

)

=
∞∨

n=1

(F (t)− F (t− n))

= F (t)−
∞∧

n=1

F (t− n) = F (t)

for every t ∈ �. By Theorem 3 there exists exactly one measure (denote it by x)
extending λF . Therefore

x ((−∞, t)) = λF ((−∞t)) = F (t)

for every t ∈ �. Moreover, x : B(�) → H is additive, continuous and x(�) =

x
( ∞⋃

n=1
〈−n, n)

)
=

∞∨
n=1
(F (n)− F (−n)) =

∞∨
n=1

F (n) −
∞∧

n=1
F (−n) = 1 − 0 = 1, hence

x is an observable. �
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