Previous |  Up |  Next

Article

Summary:
G. Grätzer and A. Kisielewicz devoted one section of their survey paper concerning $p_n$-sequences and free spectra of algebras to the topic “Small idempotent clones” (see Section 6 of [18]). Many authors, e.g., [8], [14, 15], [22], [25] and [29, 30] were interested in $p_n$-sequences of idempotent algebras with small rates of growth. In this paper we continue this topic and characterize all idempotent groupoids $(G,\cdot )$ with $p_2(G,\cdot )\le 2$ (see Section 7). Such groupoids appear in many papers see, e.g. [1], [4], [21], [26, 27], [25], [28, 30, 31, 32] and [34].
References:
[1] J. Berman: Free spectra of 3-element algebras. Universal Algebra and Lattice Theory (Puebla, 1982). Lecture Notes in Math., 1004, Springer-Verlag, Berlin, New York, 1983, pp. 10–53. MR 0716173 | Zbl 0518.08010
[2] S. Crvenkovi and J. Dudek: Rectangular groupoids. Czechoslovak Math. J. 35 (1985), 405–414. MR 0803035
[3] B. Csákány: On affine spaces over prime fields. Acta Sci. Math. (Szeged) 37 (1975), 33–36. MR 0401609
[4] B. Csákány: All minimal clones on the three-element set. Acta Cybernet. 6 (1983), 227–238. MR 0725722
[5] J. Dudek: Some remarks on distributive groupoids. Czechoslovak Math. J. 31 (1981), 58–64. MR 0626918 | Zbl 0472.20025
[6] J. Dudek: On binary polynomials in idempotent commutative groupoids. Fund. Math. 120 (1984), 187–191. DOI 10.4064/fm-120-3-187-191 | MR 0755775 | Zbl 0555.20035
[7] J. Dudek: Varieties of idempotent commutative groupoids. Fund. Math. 120 (1984), 193–204. DOI 10.4064/fm-120-3-193-204 | MR 0755776 | Zbl 0546.20049
[8] J. Dudek: Polynomial characterization of some idempotent algebras. Acta Sci. Math. 50 (1986), 39–49. MR 0862179 | Zbl 0616.08011
[9] J. Dudek: On the minimal extension of sequences. Algebra Universalis 23 (1986), 308–312. DOI 10.1007/BF01230623 | MR 0903935 | Zbl 0627.08001
[10] J. Dudek: Polynomials in idempotent commutative groupoids. Dissertationes Math. 286 (1989), 1–55. MR 1001646 | Zbl 0687.08003
[11] J. Dudek: $p_n$-sequences. The minimal extension of sequences. Abstract. Presented at the Conference on Logic and Algebra dedicated to Roberto Magari, on his 60$^{\mathrm th}$ Birthday, Pontignano (Siena) 26–30 April 1994.
[12] J. Dudek and J. Tomasik: Affine spaces over GF(4). (to appear). MR 1408727
[13] B. Ganter and H. Werner: Equational classes of Steiner systems. Algebra Universalis 5 (1975), 125–140. DOI 10.1007/BF02485242 | MR 0404103
[14] J. A. Gerhard: The lattice of quational classes of idempotent semigroups. J. Algebra 15, 195–224. DOI 10.1016/0021-8693(70)90073-6 | MR 0263953
[15] J. A. Gerhard: The number of polynomials of idempotent semigroups. J. Algebra 18, 366–376. MR 0274375 | Zbl 0219.20044
[16] G. Grätzer: Composition of functions. Proceedings of the conference on universal algebra (Kingston, 1969), Queen’s Univ., Kingston, Ont., 1970, pp. 1–106. MR 0276161
[17] G. Grätzer: Universal Algebra. Second edition. Springer-Verlag, New York-Heidelberg-Berlin, 1979. MR 0538623
[18] G. Grätzer and A. Kisielewicz: A survey of some open problems on $p_n$-sequences and free spectra of algebras and varieties. Universal Algebra and Quasigroup Theory, A.  Romanowska and J. D. H. Smith (eds.), Helderman Verlag (Berlin), 1992, pp. 57–88. MR 1191227
[19] G. Grätzer and R. Padmanabhan: On commutative idempotent and nonassociative groupoids. Proc. Amer. Math. 28 (1971), 75–78. DOI 10.2307/2037760 | MR 0276393
[20] G. Grätzer and J. Płonka: On the number of polynomials of an idempotent algebra I. Pacific J. Math. 22 (1970), 697–709. DOI 10.2140/pjm.1970.32.697 | MR 0256969
[21] H. Kaiser: On a problem in the theory of primal algebras. Algebra Universalis 5 (1974), 307–311. DOI 10.1007/BF02485263 | MR 0392773
[22] A. Kisielewicz: On idempotent algebra with $p_n=2n$. Algebra Universalis 23 (1981), 313–323. DOI 10.1007/BF01230624 | MR 0903936
[23] E. Marczewski: Independence and homomorphisms in abstract algebras. Fund. Math. 50 (1961), 45–61. DOI 10.4064/fm-50-1-45-61 | MR 0138572 | Zbl 0104.25501
[24] A. Mitschke and H. Werner: On groupoids representable by vector spaces over finite fields. Arch. Math. 24 (1973), 14–20. DOI 10.1007/BF01228164 | MR 0316601
[25] R. Padmanabhan: Characterization of a class of groupoids. Algebra Universalis 1 (1972), 374–382. DOI 10.1007/BF02944996 | MR 0294550 | Zbl 0236.20043
[26] P. P. Pálfy: Minimal clones. Preprint No. 27/1984, Budapest, May 1984, Math. Inst. of the Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13–15. Hungary.
[27] P. P. Pálfy: The arity of minimal clones. Acta Sci. Math. 50 (1986), 331–333. MR 0882043
[28] R. E. Park: A four-element algebra whose identities are not finitely based. Algebra Universalis 11 91980, 255–260. MR 0588218 | Zbl 0449.08005
[29] J. Płonka: On algebras with $n$ distinct $n$-ary operations. Algebra Universalis 1 (1971), 73–79. DOI 10.1007/BF02944958 | MR 0286928
[30] J. Płonka: On algebras with at most $n$ distinct $n$-ary operations. Algebra Universalis 1 (1971), 80–85. DOI 10.1007/BF02944959 | MR 0286929
[31] J. Płonka: On equational classes of abstract algebras defined by regular equations. Fund. Math. 64 (1969), 241–247. DOI 10.4064/fm-64-2-241-247 | MR 0244133
[32] J. Płonka: On $k$-cyclic groupoids. Math. Japonica 30 (1985), no. 3, 371–382. MR 0803288
[33] J. Płonka: Subdirectly irreducible groupoids in some varieties. CMUC 24/4 (1983), 631–645. MR 0738559
[34] S. K. Stein: Homogeneous quasigroup. Pacific J. Math. 14 (1964), 1091–1102. DOI 10.2140/pjm.1964.14.1091 | MR 0170972
Partner of
EuDML logo