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Czechoslovak Mathematical Journal, 48 (123) (1998), 105–118

SMALL IDEMPOTENT CLONES I

Józef Dudek, Wroc�law

(Received July 18, 1995)

Abstract. G. Grätzer and A. Kisielewicz devoted one section of their survey paper con-
cerning pn-sequences and free spectra of algebras to the topic “Small idempotent clones”
(see Section 6 of [18]). Many authors, e.g., [8], [14, 15], [22], [25] and [29, 30] were inter-
ested in pn-sequences of idempotent algebras with small rates of growth. In this paper we
continue this topic and characterize all idempotent groupoids (G, ·) with p2(G, ·) � 2 (see
Section 7). Such groupoids appear in many papers see, e.g. [1], [4], [21], [26, 27], [25], [28,
30, 31, 32] and [34].

1. Introduction

Recall that by pn = pn(A) we denote the number of all essentially n-ary polyno-

mials (term functions) of a given algebra A. Note that p0(A) denotes the number
of unary constant polynomials over A. The notation and notions used in this paper

are standard and we refer to [17] and [16, 18].

In [28] J. P�lonka characterized all groupoids (G, ·) (algebras) with pn(G, ·) = n for
all n (see also [17]).

P.P. Pálfy described all groupoids (G, ·) whose clones are minimal and p2(G, ·) � 2
(see [26]).

In [19] G. Grätzer and R. Padmanabhan described all groupoids (G, ·) representing
the sequence (0, 1, 1, 3, 5). They proved that any groupoid (G, ·) representing this

sequence is a nontrivial affine space over GF (3).

Recall that a sequence a = (a0, . . .) (finite or infinite) of cardinals is representable

if there exists an algebra A0 such that p(A0) = a, i.e., pi(A0) = ai for i = 0, 1, . . .

In [24] A. Mischke and H. Werner among other described by means of identities

the variety of groupoids (G, ·) which are polynomially equivalent to affine spaces over
GF (4). Obviously for such groupoids (G, ·) we have p2(G, ·) � 2. Recall that two

105



algebras (A, F1), (A, F2) are polynomially equivalent if A(F1) = A(F2), where A(F )

denotes the set of all polynomials over (A, F ).

In [12] we proved that a groupoid (G, ·) represents the sequence (0, 1, 2, 7) if and

only if (G, ·) is a nontrivial affine space over GF (4).

For more details see also [3],[7] and [8]. Note that in [28] R. Park considered

groupoids (G, ·) with p2(G, ·) = 1 which are not finitely based.

The simplest nontrivial groupoids (G, ·) with p2(G, ·) � 2 are obviously the fol-

lowing ones: T1 = ({0, 1}, e1), T2 = ({0, 1}, e2), S0 = ({0, 1},∨), where e1 is the
first projection, e2 is the second projection and also A0 = ({0, 1, 2}, 2x +3 2y).

We have p2(T1) = p2(T2) = 0 and p2(S0) = p2(A0) = 1. It is easy to see that
T1 × T2 is a groupoid satisfying x2 = x, (xy)z = x(yz) = xz. Groupoids which

satisfy these identities are called diagonal semigroups or rectangular bands. Note
that p(T1 × T2) = (0, 1, 2, 0, 0, . . .).

For a given groupoid (G, ·) we put xy1 = xy and xyn+1 = (xyn)y and dually we
define nyx (n = 1, . . .). We also write x1x2x3 instead of (x1x2)x3 and in general

x1x2 . . . xn−1xn stands for (x1x2 . . . xn−1)xn(n � 3).

A commutative idempotent groupoid (G, ·) satisfying xy2 = x is called a Steiner

quasigroup and if xy2 = xy, then (G, ·) is called a near-semilattice. Further, a
groupoid (G, ·) is distributive if (G, ·) satisfies (xy)z = (xz)(yz) and z(xy) = (zx)(zy)

for x, y, z ∈ G, and (G, ·) is medial if (G, ·) satisfies the medial law, i.e., (xy)(uv) =
(xu)(yv) for all x, y, u, v ∈ G.

We recall the groupoids introduced in [9], namely for a nonnegative integer n by
Nn we mean a groupoid ({−1, 0, 1, . . . , n−1, n}, ·), where the fundamental operation

· is defined as follows:

xy =





x if x = y,

1 + max (x, y) if x �= y and x, y � n− 1,

n otherwise.

By Nn we denote the variety of all commutative idempotent groupoids (G, ·) satis-

fying xy2 = yx2 and xyn = xyn+1 for a fixed n.

Recall also that a groupoid (G, ·) is totally commutative if every essentially binary
polynomial f over (G, ·) is commutative, i.e., f(x, y) = f(y, x) for all x, y ∈ G.

Following [31], we say that an identity is regular if the sets of variables on both
sides coincide.
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2. General remarks

We start with a result from [9].

Theorem 2.1. If (G, ·) is an idempotent groupoid, then p2(G, ·) = 1 if and only

if (G, ·) is either a nontrivial Steiner quasigroup or a nontrivial near-semilattice.

Concerning commutative idempotent groupoids we have

Theorem 2.2. Let (G, ·) be a commutative idempotent groupoid. Then

(i) If p2(G, ·) = 2, then (G, ·) contains isomorphically as a subgroupoid the

groupoid N2 (see [9]).

(ii) p2(G, ·) = 2 if and only if (G, ·) satisfies xy2 = yx2, xy2 = xy3 (i.e., (G, ·) ∈ N2)
and (G, ·) is not a near-semilattice (see [9]).

(iii) If (G, ·) satisfies xy2 = yx2, then (G, ·) is totally commutative (see Theorem 4
of [6]) and if card G > 1, then such groupoids (G, ·) satisfy only regular identities.

We also have (easy to prove)

Theorem 2.3. For every n, Nn ∈ Nn and every nontrivial member from the

variety Nn satisfies only regular identities.

Recall also the results from [10] and [11].

Theorem 2.4. If (G, ·) is a commutative idempotent groupoid, then (G, ·) is

either a semilattice (here p(G, ·) = (0, 1, 1, 1, . . .) provided card G > 1) or (G, ·)
is an affine space over GF (3) (with p(G, ·) = (0, 1, 1, 3, . . . , 2

n−(−1)n
3 , . . .) or else

pn(G, ·) � 3n−1 for all n � 4.

Moreover, a commutative groupoid (G, ·) represents the sequence (0, 1, 3, . . . ,

3n−1, . . .) if and only if (G, ·) is a nontrivial P�lonka sum of affine spaces over GF (3)

which are not all singletons (for details see [10] and [31]).

Theorem 2.5. There are no distributive, commutative and idempotent groupoids

(G, ·) with p2(G, ·) = 2.

Note that all distributive noncommutative idempotent groupoids (G, ·) with

p2(G, ·) � 2 are described in [5].
According to the formula of the description of the set of all n-ary polynomials

over a given algebra A = (A, F ) we have A(n)(A) =
∞⋃

k=0
A(n)k (A), where A(n)0 =

A(n)0 (A) = {e(n)1 , . . . , e
(n)
n }, e

(n)
i (x1, . . . , xn) = xi, i = 1, . . . , n, A(n)k+1 = A(n)k+1(A) =

A(n)k (A)∪{f(f1, . . . , fm) : f1, . . . , fm ∈ A(n)k (A), f ∈ F} (for details see [23]). For an
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idempotent groupoid (G, ·) with e
(2)
1 (x, y) = x, e

(2)
2 (x, y) = y we have A(2)2 (G, ·) =

{x, y, xy, yx, xy2, yx2,2yx,2xy, (xy)x, (yx)y, x(yx), y(xy), (xy)(yx), (yx)(xy)}. So,

dealing with idempotent groupoids (G, ·) satisfying p2(G, ·) = 2 we have to consider
the set A(2)2 (G, ·).

According to Theorems 2.1 and 2.2 we mainly deal with noncommutative idempo-
tent groupoids (G, ·) satisfying p2(G, ·) = 2. (Keep in mind that our main aim is to

describe such groupoids by means of identities). The main role in our considerations
play by the polynomial xy2.

3. Groupoids with XY 2 = X.

We start with

Lemma 3.1. Let (G, ·) be an idempotent groupoid satisfying xy2 = x. Then we

have

(i) (G, ·) satisfies xy = x iff (G, ·) satisfies (xy)x = x.

(ii) (G, ·) is a Steiner quasigroup iff (G, ·) satisfies (xy)x = y (or dually x(yx) = y).

(iii) (G, ·) satisfies (xy)x = yx iff card G = 1.

(iv) (G, ·) is a left–sided quasigroup, i.e., the equation xa = b has a unique solution

for a, b ∈ G.

(v) If p2(G, ·) = 2, then (G, ·) is a noncommutative groupoid satisfying (xy)x = xy.

(vi) If (G, ·) satisfies (xy)x = xy, then (G, ·) satisfies x(xy) = x.

�����. We prove only (v). If (G, ·) is commutative, then (G, ·) is a Steiner
quasigroup and therefore p2(G, ·) � 1, which contradicts the assumption p2(G, ·) = 2.

Take the polynomial (xy)x. Using the assumption p2(G, ·) = 2 and the conditions
(i)–(iii) we get (xy)x = xy, completing the proof of the lemma. �

Similarly we get

Lemma 3.2. Let (G, ·) be an idempotent groupoid satisfying xy2 = x. Then we

have

(i) (G, ·) satisfies x(yx) = x iff (G, ·) satisfies xy = x.

(ii) (G, ·) satisfies x(yx) = y iff (G, ·) is a Steiner quasigroup.

(iii) (G, ·) satisfies x(yx) = yx iff card G = 1.

(iv) If p2(G, ·) = 2, then (G, ·) satisfies x(yx) = xy and (xy)(yx) = x.

Note that there exist idempotent groupoids (G, ·) satisfying xy2 = x in which
the polynomial (xy)x = x(yx) is commutative. Take e.g. an abelian group (G, +) of

exponent 5. Then (G, ·) where xy = 4x+2y is the required groupoid. Such groupoids
are obviously polynomially equivalent to affine spaces over GF (5).
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For a given groupoid (G, ·) with the fundamental polynomial xy we consider the

groupoid (G, ◦) where x◦y = yx for all x, y ∈ G; it is called the dual groupoid of (G, ·).
If K is a class of groupoids, then by Kd we denote the class of all dual groupoids (G, ·)
from K. Note that a groupoid (G, ·) is called proper if the fundamental operation

xy is essentially binary.
We have

Lemma 3.3. Let (G, ·) be an idempotent groupoid satisfying xy2 = x. Then

p2(G, ·) = 2 iff (G, ·) belongs to the variety K1 : xy = (xy)x = x(yx) and (G, ·) is

proper.

(The dual class Kd
1 of the class K1 is defined by x = y(yx), yx = x(yx) = (xy)x).

�����. If p2(G, ·) = 2, then the proof follows from the last two lemmas. If
(G, ·) ∈ K1 and (G, ·) is proper, then obviously (G, ·) is noncommutative and xy is
essentially binary. Using the identities of the groupoid (G, ·) one can compute the

elements of the set A(2)(G, ·). We simply show that A(2)(G, ·) = {x, y, xy, yx} and
hence p2(G, ·) = 2, completing the proof. �

Note that there exist proper (noncommutative) idempotent groupoids (G, ·) be-

longing to the variety K1. For example, let (G, +) be an abelian group of exponent
4. Take (G, ·) with xy = 3x + 2y. Then (G, ·) ∈ K1.

4. Groupoids with XY 2 = Y

Concerning (xy)x we have

Lemma 4.1. Let (G, ·) be an idempotent groupoid satisfying xy2 = y. Then (G, ·)
is one-element iff one of the following conditions holds: either (G, ·) is commutative

or (xy)x = y or (xy)x = xy.

�����. If e.g. (xy)x = xy, then using xy2 = y we get xy = (xy)x = ((xy)x)x =
x, which gives x = xy = (xy)y = y as required, completing the proof. �

According to this lemma we have the following possibilities for the polynomial
(xy)x: (xy)x = x or (xy)x = yx.

Lemma 4.2. If (G, ·) is a proper idempotent groupoid satisfying xy2 = y and

(xy)x = x, then (G, ·) satisfies x(xy) = y(xy) = xy and (xy)(yx) /∈ {y, xy}.

�����. Putting xy for x in (xy)x = x we get xy = ((xy)y)(xy) = y(xy). If

e.g. (xy)(yx) = y, then y = ((xy)y)(y(xy)) = y(y(xy)) = y(xy) = xy, which is
impossible. �
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From this lemma we get

Lemma 4.3. Let (G, ·) be a proper idempotent groupoid satisfying y = xy2 =

(yx)y. Then p2(G, ·) = 2 iff (G, ·) belongs to one of the following varieties:

K2 : xy = x(xy) = y(xy) and (xy)(yx) = x,

K3 : xy = x(xy) = y(xy) = (yx)(xy).

Recall that the dual classes of K2 and K3 are defined by
Kd
2 : y = y(yx) = y(xy), yx = (yx)x = (yx)y and (xy)(yx) = x,

Kd
3 : y = y(yx) = y(xy), yx = (yx)x = (yx)y = (yx)(xy).

Further we consider idempotent groupoids (G, ·) with p2(G, ·) = 2 satisfying xy2 =
y and (xy)x = yx. We have

Lemma 4.4. Let (G, ·) be an idempotent groupoid satisfying xy2 = y and (xy)x =

yx. Then we have

(i) card G = 1 iff x(xy) ∈ {x, yx} or x(yx) ∈ {y, xy}.
(ii) (G, ·) satisfies xy = y iff x(yx) = x.

�����. (i) If e.g. x(xy) = yx, then x = (yx)x = (x(xy))x = (xy)x = yx. The
identities xy = y and x(xy) = yx give card G = 1.

(ii) If x(yx) = x, then x = x(yx) = (x(yx))(yx) = yx, completing the proof. �

As a corollary of this lemma we get

Lemma 4.5. Let (G, ·) be a proper idempotent groupoid satisfying xy2 = y and

(xy)x = yx. Then p2(G, ·) = 2 iff (G, ·) belongs to one of the following varieties:

Kd
1 : x(xy) = y and x(yx) = yx,

K4 : x(xy) = xy and x(yx) = yx.

Moreover, the varieties Kd
1 (and also K1), K4 have proper models (see e.g. p. 394

[17]).

From Lemmas 4.3 and 4.5 we get

Lemma 4.6. Let (G, ·) be a proper idempotent groupoid satisfying xy2 = y.

Then p2(G, ·) = 2 iff (G, ·) belongs to one of the varieties

K2 : xy = x(xy) = y(xy), x = (xy)x = (xy)(yx),

K3 : xy = x(xy) = y(xy) = (yx)(xy) and (xy)x = x,

K4 : xy = x(xy), (xy)x = x(yx) = yx,
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and to the dual of K1.

We continue our characterization and deal with idempotent groupoids (G, ·) satis-

fying p2(G, ·) = 2 and either xy2 = xy or xy2 = yx. It is obvious that such groupoids
are proper and noncommutative.

5. Groupoids with XY 2 = XY

First we consider the polynomial (xy)x. We have

Lemma 5.1. Let (G, ·) be a proper idempotent groupoid satisfying xy2 = xy and

(xy)x = x. Then p2(G, ·) = 2 iff (G, ·) belongs to the variety

K5 : x = x(yx) = (xy)(yx).

�����. First observe that the identity (xy)x = x implies x(xy) = xy. Assume
now that (G, ·) satisfies xy2 = xy, (xy)x = x and p2(G, ·) = 2. Take x(yx). Obviously

x(yx) �= y. If x(yx) = xy, then putting yx for x in this identity we get y = (yx)y =
(yx)(y(yx)) = yx, a contradiction. If (G, ·) satisfies x(yx) = yx, then yx = (yx)x =

(x(yx))x = x, which is impossible. Thus we have proved that (G, ·) satisfies x(yx) =
x. In this case we consider the polynomial (xy)(yx). If (xy)(yx) = y, then using

yx = y(yx) we get yx = y(yx) = ((xy)(yx))(yx) = (xy)(yx) = y, a contradiction.
If (xy)(yx) = xy, then putting xy for y we get xy = x(xy) = (x(xy))((xy)x) =

(xy)x = x, again a contradiction. Analogously we get (xy)(yx) �= yx and therefore
(G, ·) satisfies (xy)(yx) = x as required.

If (G, ·) is a proper member of K5, then the standard method shows that p2(G, ·) =
2, completing the proof of the lemma. �

Note that K5 = Kd
5 and any near-rectangular band, i.e. an idempotent groupoid

(G, ·) satisfying (xy)z = xz and x(yx) = x, is a member of K5 (for details see [2]).
Now we deal with groupoids (G, ·) satisfying either (xy)x = xy or (xy)x = yx.

It is easy to prove

Lemma 5.2. Let (G, ·) be an idempotent groupoid satisfying xy = xy2 = (xy)x.

Then we have

(i) (G, ·) satisfies x(yx) = y iff card G = 1.

(ii) If p2(G, ·) = 2, then (G, ·) satisfies either x(yx) = x or x(yx) = xy or x(yx) =
yx.

Further we have

Lemma 5.3. Let (G, ·) be a proper idempotent groupoid satisfying xy = xy2 =
(xy)x and x(yx) = x. Then p2(G, ·) = 2 iff (G, ·) belongs either to Kd

2 or to Kd
3 .
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�����. Recall that Kd
2 and Kd

3 are defined by

Kd
2 : xy2 = xy = (xy)x, x(yx) = (xy)(yx) = x, and

Kd
3 : xy2 = xy = (xy)x = (xy)(yx), x(yx) = x

(see Lemma 4.6). Assume that p2(G, ·) = 2. Consider the polynomial (xy)(yx). If

(xy)(yx) = y, then y = (xy2)(y(xy)) = xy, a contradiction. Analogously we have
(xy)(yx) �= yx. Thus we see that (G, ·) satisfies either (xy)(yx) = x or (xy)(yx) = xy

and therefore (G, ·) ∈ Kd
2 ∪Kd

3 . It is routine to prove the converse, completing the
proof. �

Concerning Lemma 5.2 we have

Lemma 5.4. Let (G, ·) be a proper noncommutative idempotent groupoid satis-

fying xy = xy2 = (xy)x = x(yx). Then p2(G, ·) = 2 iff (G, ·) belongs either to Kd
4 or

to the variety K6 : x(xy) = xy.

�����. Assume that p2(G, ·) = 2. Take x(xy). If x(xy) = y, then y =
x(xy) = x(x(yx)) = yx, which is impossible. If x(xy) = yx, then putting xy for

x we get yx = y(xy) = (xy)(xy2) = xy which proves that (G, ·) is commutative, a
contradiction. Since p2(G, ·) = 2 we infer that (G, ·) satisfies either x(xy) = x or
x(xy) = xy. If the first case occurs, then (G, ·) ∈ Kd

4 , i.e. (G, ·) satisfies xy = xy2 =

(xy)x = x(yx) = (xy)(yx) and x(xy) = x. If the second case occurs, then (G, ·)
satisfies xy = xy2 = (xy)x = x(yx) = x(xy) = (xy)(yx), i.e. (G, ·) ∈ K6, completing

the proof. �

According to Lemma 5.2 it remains to consider yet in this case the identity x(yx) =
yx. We have

Lemma 5.5. There is no idempotent groupoid with p2(G, ·) = 2 satisfying xy =

xy2 = (xy)x = y(xy).

�����. First we prove that x(xy) = xy. Indeed, we have x(xy) = x((xy)x) =

(xy)x = xy. Take now the polynomial (xy)(yx). If (xy)(yx) = x, then x =
(x(xy))((xy)x) = (xy)(xy) = xy, a contradiction. Analogously we get (xy)(yx) �= y.

If (xy)(yx) = yx, then xy = (yx)(xy) = ((xy)(yx))(xy) = (xy)(yx) = yx and hence
(G, ·) is a near-semilattice, which is impossible. Analogously, using xy = y(xy) we

infer that (xy)(yx) �= xy, which completes the proof of the lemma. �

According to Lemmas 5.1 and 5.2 to complete the case xy2 = xy it remains to
consider yet the identity (xy)x = yx. Note that if (G, ·) satisfies (xy)x = y, then

(G, ·) is a quasigroup and hence (G, ·) is cancellative. In this case xy2 = xy gives
x = y. Further we have.
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Lemma 5.6. Let (G, ·) be a noncommutative idempotent groupoid satisfying

xy2 = xy and (xy)x = yx. Then p2(G, ·) = 2 iff (G, ·) belongs to the dual of K6, i.e.,

(G, ·) satisfies Kd
6 : xy = xy2 = (yx)y = y(xy) = x(xy) = (yx)(xy) .

�����. Putting xy for x in (xy)x = yx we get y(xy) = (xy2)(xy) = xy and

we have (yx)(xy) = ((xy)x)(xy) = x(xy). Consider now the polynomial x(xy).
We see that x(xy) �= y. If x(xy) = x, then using (xy)x = yx we get (xy)(yx) =

(xy)((xy)x) = xy and hence xy = (xy)(yx) = y(yx) = y, a contradiction. Let
x(xy) = yx. Then (yx)(xy) = (x(xy))(xy) = x(xy) = yx and xy = (xy)(yx) =

(xy)((yx)(xy)) = (yx)(xy) = yx, which is impossible. Thus we have proved that
(G, ·) satisfies x(xy) = xy and consequently (G, ·) ∈ Kd

6 ; the fact that if (G, ·) ∈ Kd
6 ,

then p2(G, ·) = 2 is obvious, which completes the proof of the lemma. �

To complete our characterization of idempotent groupoids (G, ·) with p2(G, ·) = 2

it remains to consider the last case, namely the identity xy2 = yx.

6. Groupoids with XY 2 = Y X

We begin with

Lemma 6.1. If (G, ·) is a groupoid satisfying xy2 = yx, then (G, ·) satisfies

(xy)x = x(yx).

�����. Using xy2 = yx we have (yx)y = ((xy)y)y = y(xy) as required. �

Lemma 6.2. Let (G, ·) be a proper idempotent groupoid satisfying xy2 = yx.

Then p2(G, ·) = 2 iff (G, ·) belongs to K7 : (xy)x = y.

Moreover, if (G, ·) ∈ K7 and a, b ∈ G a �= b, then the subgroupoid G(a, b) generated

by the set {a, b} is a four-element affine space over GF (4).

�����. Let p2(G, ·) = 2. Using the preceding lemma we get (xy)x = x(yx).

Take the polynomial (xy)x. If (xy)x = x, then x = x(yx) = (x(yx))(yx) = (yx)x =
xy, a contradiction. If (xy)x = yx, then xy = (yx)x = ((xy)x)x = x(xy). Us-

ing xy = x(xy) and (xy)x = yx we get (yx)(xy) = ((xy)x)(xy) = x(xy) =
xy. The identity (xy)(yx) = yx gives xy = ((yx)(xy))(xy) = (xy)(yx) = yx

and therefore (G, ·) is a near-semilattice, a contradiction. If (xy)x = xy, then
(xy)(yx) = ((xy)x)(yx) = (x(yx))(yx) = (yx)x = xy. Using xy = (xy)(yx) we

get xy = (xy)(yx) = ((xy)(yx))(yx) = (yx)(xy) = yx, a contradiction. Thus we
have proved that (G, ·) satisfies (xy)x = y.

Let now (G, ·) ∈ K7 i.e., (G, ·) satisfies xy2 = yx, (xy)x = y and also x(xy) = yx,
x(yx) = y, (xy)(yx) = y, xy3 = x and 3yx = x. Let G(a, b) be the subgroupoid
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generated by the set {a, b} where a �= b and a, b ∈ G. One can check that G(a, b) =

{a, b, ab, ba} and the groupoid G(a, b) is an affine space over GF (4), which completes
the proof of the lemma. �

7. A characterization theorem

As a corollary of Lemmas 3.3, 4.6, 5.3, 5.4, 5.5, 5.6, 6.2 and Theorems 2.1, 2.2 we

get

Theorem. Let (G, ·) be an idempotent groupoid. Then p2(G, ·) � 2 if and only

if (G, ·) belongs to one of the following varieties:

K1 : xy2 = x, xy = (xy)x = x(yx), x(xy) = (xy)(yx) = x;

K2 : xy2 = y, (xy)(yx) = (xy)x = x, xy = x(xy) = y(xy);

K3 : xy2 = y, (xy)x = x, xy = x(xy) = y(xy) = (yx)(xy);

K4 : xy2 = y, xy = (yx)y = y(xy) = x(xy) = (yx)(xy);

K5 : xy2 = xy, (xy)x = x(yx) = (xy)(yx) = x;

K6 : xy2 = xy = (xy)x = x(yx) = x(xy) = (xy)(yx);

K7 : xy2 = yx, (xy)x = x(yx) = y, x(xy) = yx, (xy)(yx) = y;

K8 : xy2 = x, xy = yx—the variety of Steiner quasigroups;

K9 : xy = yx, xy2 = yx2, xy2 = xy3—the variety N2
and to the varieties Kd

i (i = 1, . . . , 9).

Note that in the above varieties some identities can be omitted (they are inserted
only for the sake of symmetry). Proper models were given earlier from each variety

Ki (i = 1, . . . , 9), except for i = 2 and i = 3. The next two sections are devoted to
these varieties. Note also that the variety K9 plays an important role in Grätzer’s

problem of the minimal extension of sequences (see [16]).

On the variety K2. In this section we shall deal with the variety K2, i.e. the
variety of all idempotent groupoids (G, ·) defined by xy2 = y, (xy)x = (xy)(yx) = x

and xy = y(xy). Note that xy = x(xy) is a consequence of (xy)x = x.

We define the four-element groupoid k2 = ({1, 2, 3, 4}, ·), where 1 · 2 = 3, 2 · 3 = 4,

3·4 = 1, 4·3 = 2 and otherwise the fundamental operation xy is the second projection.
It is not hard to prove that k2 is a proper groupoid belonging to the variety K2. We

have

Lemma 8.1. If (G, ·) is a proper groupoid from the variety K2, then (G, ·)
contains isomorphically the groupoid k2 as a subgroupoid.
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�����. Since (G, ·) is proper we infer that there exist elements a, b ∈ G such

that ab �= b and a �= b. Take the subgroupoid G(a, b) generated by the set {a, b}.
We have G(a, b) = {a, b, ab, ba}. Now we show that card G(a, b) = 4. If a = ab, then
a = ab = (ab)b = b, which is impossible. If a = ba, then ab = (ba)b = b. If b = ba,

then b = ba = (ba)a = a. If again ab = ba, then a = (ab)(ba) = (ba)(ab) = b. The
required isomorphism between G(a, b) and the groupoid k2 is given by the mapping

a → 1, b → 2, ab → 3 and ba → 4, which completes the proof of the lemma. �

Further we try to estimate the number pn of proper groupoids (G, ·) from K2. In
this connection we recall some definitions.

For a given function f = f(x1, . . . , xn) on a set A we denote by G(f) the symmetry
group of the function f , i.e., the subgroup of the group Sn of all permutations σ ∈ Sn

such that f(x1, . . . , xn) = f(xσ1 , . . . , xσn ) for all x1, . . . xn ∈ A (for more details
see [20]). It is clear that if f = f(x1, . . . , xn) is essentially n-ary, then fσ where

fσ(x1, . . . , xn) = f(xσ1 , . . . , xσn) is also essentially n-ary. So, from an essentially
n-ary function f on a set A we can get (permuting its variables) n!

cardG(f) different

essentially n-ary functions on A.

Lemma 8.2. If (G, ·) is a proper groupoid from K2, then the polynomials (xy)z,

x(yz) are essentially ternary, their symmetry groups are one-element and (xy)z �=
σx(σyσz) for every permutation σ.

�����. Let (G, ·) ∈ K2. Using the identities xy2 = y, (xy)x = (xy)(yx) = x and
xy = x(xy) = y(xy) one can prove that both (xy)z and x(yz) are essentially ternary.
Since (G, ·) is not a semilattice we infer that (xy)z �= (yz)x and x(yz) �= y(zx)

(see e.g. Theorem 8 [7]). If (xy)z = (yx)z, then xy = (xy)(xy) = (yx)(xy) = y, a
contradiction.

If (xy)z = (zy)x, then y = (xy)y = yx, a contradiction. If (xy)z = (xz)y,
then xy = (xy)x = x, which is again impossible. Thus we have proved that

card G((xy)z) = 1. Consider now the polynomial x(yz). If x(yz) = x(zy), then
yx = x(yx) = x(xy) = xy, a contradiction. If x(yz) = z(yx), then putting y = z we

get xy = yx. If x(yz) = y(xz), then x = (xy)(yx) = y((xy)x) = yx and this proves
that cardG(x(yz)) = 1. Let now (xy)z ∈ {x(yz), y(zx), z(xy), y(xz), z(yx), x(zy)}.
We see that in any case if (xy)z = σx(σyσz) holds, then putting y = z we get a
contradiction, which completes the proof. �

Analogously as above we prove

Lemma 8.3. If (G, ·) is a proper groupoid from K2, then the polynomial

f(x, y, z) = ((xy)z)x is essentially ternary, its symmetry group is one-element, f /∈
{(xy)z, (yz)x, (zx)y, (yx)z, (zy)x} and f /∈ {x(yz), y(zx), z(xy), y(xz), z(yx), x(zy)}.
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As a corollary from Lemmas 8.1 and 8.2 we get

Proposition 8.4. If (G, ·) is a proper groupoid from the variety K2, then

pn(G, ·) � pn(k2) for all n and p3(G, ·) � 12.

9. On the variety K3

Recall that K3 is a variety of idempotent groupoids (G, ·) defined by the following

identities:
xy2 = y, (xy)x = x, xy = x(xy) = y(xy) = (yx)(xy).

We start with an easy

Lemma 9.1. The groupoid k3 = ({0, 1, 2}, ·), where 0 ·1 = 1 ·0 = 2 and otherwise

the operation xy is the second projection, belongs to the variety K3. Moreover, this

groupoid satisfies the identity x(yz) = y(xz).

Lemma 9.2. If (G, ·) is a proper groupoid from K3, then the polynomials

(xy)z, x(yz) are essentially ternary and the symmetry group of (xy)z is one-element.

If the symmetry group of x(yz) is nontrivial, then (G, ·) satisfies x(yz) = y(xz) and

the transposition (x, y) is the only admissible nontrivial permutation of x(yz).

�����. Analogously as in Lemma 8.2 we prove that (xy)z, x(yz) are essentially

ternary. Now we examine the symmetry groups of these polynomials. According to
Theorem 8 of [7] we infer that (xy)z �= (yz)x and x(yz) �= y(zx). If (xy)z = (yx)z,

then yz = ((xy)y)z = (y(xy))z = (xy)z, which contradicts the fact that (xy)z is
essentially ternary. If (xy)z = (zy)x, then y = (xy)y = yx, a contradiction. Similarly

(xy)z �= (xz)y. Thus we get card G((xy)z) = 1. We also have x(yz) �= x(zy)
and x(yz) �= z(yx). If e.g. x(yz) = x(zy), then xy = (yx)(xy) = yx and hence

x = (xy)x = x(xy) = xy, a contradiction which completes the proof. �

We have (similarly as in Lemma 8.3)

Lemma 9.3. If (G, ·) is a proper groupoid from K3, then the polynomial

f(x, y, z) = ((xy)z)x is essentially ternary, its symmetry group is trivial and the

groupoid k3 satisfies the identity ((xy)z)x = yzx.

�����. Since f(x, y, y) = yx we infer that f depends on x. If f does not depend
on y, then (G, ·) satisfies x = (xz)x = zx, a contradiction. If f does not depend on z,

then x = ((xy)x)x = ((xy)y)x = yx, again a contradiction. If ((xy)z)x = ((yx)z)y
or ((xy)z)x = ((yx)z)y, then putting x = z we get x = xy, a contradiction. If
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((xy)z)x = ((xz)y)x, then putting z = xy we obtain x = (xy)x = ((x(xy))y)x =

((xy)y)x = yx, again a contradiction. If ((xy)z)x = ((zy)x)z, then y = z gives
yx = y. Thus we have proved that cardG((xy)z)) = 1. Further observe that if
(G, ·) ∈ K3, then (G, ·) satisfies xyzx = yzx under any identification of variables and

now it is not difficult to check that the groupoid k2 satisfies this identity, completing
the proof of the lemma. �

As a corollary from Lemmas 9.1 and 9.2 we get

Proposition 9.4. If (G, ·) is a proper groupoid from the variety K3, then

p3(G, ·) � 9.

References

[1] J. Berman: Free spectra of 3-element algebras. Universal Algebra and Lattice Theory
(Puebla, 1982). Lecture Notes in Math., 1004. Springer-Verlag, Berlin, New York, 1983,
pp. 10–53.

[2] S. Crvenkovic̆ and J. Dudek: Rectangular groupoids. Czechoslovak Math. J. 35 (1985),
405–414.

[3] B. Csákány: On affine spaces over prime fields. Acta Sci. Math. (Szeged) 37 (1975),
33–36.

[4] B. Csákány: All minimal clones on the three-element set. Acta Cybernet. 6 (1983),
227–238.

[5] J. Dudek: Some remarks on distributive groupoids. Czechoslovak Math. J. 31 (1981),
58–64.

[6] J. Dudek: On binary polynomials in idempotent commutative groupoids. Fund. Math.
120 (1984), 187–191.

[7] J. Dudek: Varieties of idempotent commutative groupoids. Fund. Math. 120 (1984),
193–204.

[8] J. Dudek: Polynomial characterization of some idempotent algebras. Acta Sci. Math. 50
(1986), 39–49.

[9] J. Dudek: On the minimal extension of sequences. Algebra Universalis 23 (1986),
308–312.

[10] J. Dudek: Polynomials in idempotent commutative groupoids. Dissertationes Math. 286
(1989), 1–55.

[11] J. Dudek: pn-sequences. The minimal extension of sequences. Abstract. Presented at the
Conference on Logic and Algebra dedicated to Roberto Magari, on his 60th Birthday.
Pontignano (Siena) 26–30 April 1994.

[12] J. Dudek and J. Tomasik: Affine spaces over GF(4). To appear.
[13] B. Ganter and H. Werner: Equational classes of Steiner systems. Algebra Universalis 5

(1975), 125–140.
[14] J. A. Gerhard: The lattice of quational classes of idempotent semigroups. J. Algebra

15, 195–224.
[15] J. A. Gerhard: The number of polynomials of idempotent semigroups. J. Algebra 18,

366–376.
[16] G. Grätzer: Composition of functions. Proceedings of the conference on universal algebra

(Kingston, 1969). Queen’s Univ., Kingston, Ont., 1970, pp. 1–106.

117



[17] G. Grätzer: Universal Algebra. Second edition. Springer-Verlag, New York-Heidelberg-
Berlin, 1979.

[18] G. Grätzer and A. Kisielewicz: A survey of some open problems on pn-sequences and
free spectra of algebras and varieties. Universal Algebra and Quasigroup Theory (A. Ro-
manowska and J. D. H. Smith, eds.). Helderman Verlag (Berlin), 1992, pp. 57–88.

[19] G. Grätzer and R. Padmanabhan: On commutative idempotent and nonassociative
groupoids. Proc. Amer. Math. 28 (1971), 75–78.

[20] G. Grätzer and J. P�lonka: On the number of polynomials of an idempotent algebra I.
Pacific J. Math. 22 (1970), 697–709.

[21] H. Kaiser: On a problem in the theory of primal algebras. Algebra Universalis 5 (1974),
307–311.

[22] A. Kisielewicz: On idempotent algebra with pn = 2n. Algebra Universalis 23 (1981),
313–323.

[23] E. Marczewski: Independence and homomorphisms in abstract algebras. Fund. Math.
50 (1961), 45–61.

[24] A. Mitschke and H. Werner: On groupoids representable by vector spaces over finite
fields. Arch. Math. 24 (1973), 14–20.

[25] R. Padmanabhan: Characterization of a class of groupoids. Algebra Universalis 1 (1972),
374–382.

[26] P. P. Pálfy: Minimal clones. Preprint No. 27/1984, Budapest, May 1984. Math. Inst. of
the Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13–15. Hungary.

[27] P. P. Pálfy: The arity of minimal clones. Acta Sci. Math. 50 (1986), 331–333.
[28] R. E. Park: A four-element algebra whose identities are not finitely based. Algebra

Universalis 11 91980, 255–260.
[29] J. P�lonka: On algebras with n distinct n-ary operations. Algebra Universalis 1 (1971),

73–79.
[30] J. P�lonka: On algebras with at most n distinct n-ary operations. Algebra Universalis 1

(1971), 80–85.
[31] J. P�lonka: On equational classes of abstract algebras defined by regular equations. Fund.

Math. 64 (1969), 241–247.
[32] J. P�lonka: On k-cyclic groupoids. Math. Japonica 30 (1985), no. 3, 371–382.
[33] J. P�lonka: Subdirectly irreducible groupoids in some varieties. CMUC 24/4 (1983),

631–645.
[34] S. K. Stein: Homogeneous quasigroup. Pacific J. Math. 14 (1964), 1091–1102.

Author’s address: Mathematical Institute, University of Wroc�law, Pl. Grunwaldzki 2/4,
50-384 Wroc�law, Poland.

118


		webmaster@dml.cz
	2020-07-03T11:31:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




