Previous |  Up |  Next

Article

Summary:
We study the relationship between derivates and variational measures of additive functions defined on families of figures or bounded sets of finite perimeter. Our results, valid in all dimensions, include a generalization of Ward’s theorem, a necessary and sufficient condition for derivability, and full descriptive definitions of certain conditionally convergent integrals.
References:
[B] B. Bongiorno: Essential variation. Measure Theory Oberwolfach 1981, Springer Lecture Notes Math., 945, 1981, pp. 187–193. MR 0675282
[BPS] B. Bongiorno, L. Di Piazza and V. Skvortsov: The essential variation of a function and some convergence theorems. Anal. Math. 22 (1996), no. 1, 3–12. DOI 10.1007/BF02342334 | MR 1384345
[BPT] B. Bongiorno, W.F. Pfeffer and B.S. Thomson: A full descriptive definition of the gage integral. Canadian Math. Bull. 39 (1996), no. 4, 390–401. DOI 10.4153/CMB-1996-047-x | MR 1426684
[BV] B. Bongiorno and P. Vetro: Su un teorema di F. Riesz. Atti Acc. Sci. Lettere e Arti Palermo (IV) 37 (1979), 3–13.
[Di] L. Di Piazza: A note on additive functions of intervals. Real Anal. Ex. 20(2) (1994–95), 815–818. MR 1348103
[EG] L.C. Evans and R.F. Gariepy: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, 1992. MR 1158660
[Fe] H. Federer: Geometric Measure Theory. Springer-Verlag, New York, 1969. MR 0257325 | Zbl 0176.00801
[Gu] E. Giusti: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel, 1984. MR 0775682 | Zbl 0545.49018
[P1] W.F. Pfeffer: The Gauss-Green theorem. Adv. Math. 87 (1991), 93–147. DOI 10.1016/0001-8708(91)90063-D | MR 1102966 | Zbl 0732.26013
[P3] W.F. Pfeffer: A descriptive definition of a variational integral and applications. Indiana Univ. Math. J. 40 (1991), 259–270. DOI 10.1512/iumj.1991.40.40011 | MR 1101229 | Zbl 0747.26010
[P] W.F. Pfeffer: The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993. MR 1268404 | Zbl 0804.26005
[Sa] S. Saks: Theory of the Integral. Dover, New York, 1964. MR 0167578
[St] E.M. Stein: Singular Integrals and Differentiability Properties of Function. Princeton Univ. Press, Princeton, 1970. MR 0290095
[T] B. S. Thomson: Derivates of Interval Functions. Mem. Amer. Math. Soc., #452, Providence, 1991. MR 1078198 | Zbl 0734.26003
[V] A.I. Volpert: The spaces $BV$ and quasilinear equations. Math. USSR-SB. 2 (1967), 255–267. MR 0216338
Partner of
EuDML logo