Previous |  Up |  Next

Article

References:
[1] S. J. Bernau: The lateral completion of an arbitrary lattice group. J. Austral. Math. Soc. 19 (1975), 263–289. DOI 10.1017/S1446788700031463 | MR 0384640 | Zbl 0314.06011
[2] S. J. Bernau: Lateral and Dedekind completion of archimedean lattice groups. J. London Math. Soc. 12 (1976), 320–322. DOI 10.1112/jlms/s2-12.3.320 | MR 0401579 | Zbl 0333.06008
[3] D. Byrd and T. J. Lloyd: A note on lateral completion in lattice ordered groups. J. London Math. Soc. 1 (1969), 358–362. DOI 10.1112/jlms/s2-1.1.358 | MR 0249339
[4] P. F. Conrad: Lateral completion of lattice ordered groups. Proc. London Math. Soc. 19 (1969), 444–480. MR 0244125
[5] P. F. Conrad: The essential closure of an archimedean lattice group. Duke Math. J. 38 (1971), 151–160. MR 0277457
[6] C. J. Everett: Sequence completion of lattice moduls. Duke Math. J. 11 (1944), 109–119. DOI 10.1215/S0012-7094-44-01112-9 | MR 0009592 | Zbl 0060.06301
[7] L. Fuchs: Partially ordered algebraic systems. Pergamon Press, Oxford-London-New York-Paris, 1963. MR 0171864 | Zbl 0137.02001
[8] J. Jakubík: Representations and extensions of $\ell $-groups. Czechoslovak Math. J. 13 (1963), 267–283. (Russian)
[9] J. Jakubík: Orthogonal hull of a strongly projectable lattice ordered group. Czechoslovak Math. J. 28 (1978), 484–504. MR 0505957
[10] J. Jakubík: Maximal Dedekind completion of an abelian lattice ordered group. Czechoslovak Math. J. 28 (1978), 611–631. MR 0506435
[11] H. Nakano: Modern spectral theory. Tokyo, 1950. MR 0038564 | Zbl 0041.23402
[12] A. G. Pinsker: Extended semiordered groups and spaces. Uchen. zapiski Leningrad. Gos. Ped. Inst. 86 (1949), 236–365. (Russian)
Partner of
EuDML logo