Article
Summary:
We use an algebraic method to classify the generalized permutation star-graphs, and we use the classification to determine the toughness of all generalized permutation star-graphs.
References:
[3] Chartrand, G. and Harary, F.:
Planar permutation graphs. Ann. Inst. Henri Poincaré III 4 (1967), 433–438.
MR 0227041
[5] Dörfler, W.:
Automorphisms and Isomorphisms of Permutation Graphs. Colloques Inter., C.N.R.S., Problemes Combinatorics et Theorie des Graphs vol. 260, 1978, pp. 109–110.
MR 0539953
[6] Dörfler, W.:
On mapping graphs and permutation graphs. Math. Slovaca 3. 28 (1978), 277–288.
MR 0534995
[7] Frucht, R.:
Die Gruppe des Petersenschen Graphen und der Kantensysteme der regulären Polyeder. Commentarii Mathematici Helvetici 9 (1938), 217–223.
DOI 10.1007/BF01258190
[8] Holton, D.A. and Stacey, K.C.:
Some problems in permutation graphs. Lecture Notes in Mathematics 452, In: Combinatorial Mathematics III, Springer-Verlag, Berlin, 1975, pp. 143–155.
MR 0371740