Previous |  Up |  Next

Article

Summary:
We use an algebraic method to classify the generalized permutation star-graphs, and we use the classification to determine the toughness of all generalized permutation star-graphs.
References:
[1] Chao, C.Y.: On groups and graphs. Trans. Amer. Math. Soc. 118 (1965), 488–497. DOI 10.1090/S0002-9947-1965-0177031-6 | MR 0177031 | Zbl 0129.39704
[2] Chao, C.Y.: On the classification of symmetric graphs with a prime number of vertices. Trans. Amer. Math. Soc. 158 (1971), 247–257. DOI 10.1090/S0002-9947-1971-0279000-7 | MR 0279000 | Zbl 0217.02403
[3] Chartrand, G. and Harary, F.: Planar permutation graphs. Ann. Inst. Henri Poincaré III 4 (1967), 433–438. MR 0227041
[4] Chvátal, V.: Toughness graphs and Hamiltonian circuits. Discrete Math 5 (1973), 215–228. DOI 10.1016/0012-365X(73)90138-6
[5] Dörfler, W.: Automorphisms and Isomorphisms of Permutation Graphs. Colloques Inter., C.N.R.S., Problemes Combinatorics et Theorie des Graphs vol. 260, 1978, pp. 109–110. MR 0539953
[6] Dörfler, W.: On mapping graphs and permutation graphs. Math. Slovaca 3. 28 (1978), 277–288. MR 0534995
[7] Frucht, R.: Die Gruppe des Petersenschen Graphen und der Kantensysteme der regulären Polyeder. Commentarii Mathematici Helvetici 9 (1938), 217–223. DOI 10.1007/BF01258190
[8] Holton, D.A. and Stacey, K.C.: Some problems in permutation graphs. Lecture Notes in Mathematics 452, In: Combinatorial Mathematics III, Springer-Verlag, Berlin, 1975, pp. 143–155. MR 0371740
[9] Ringeisen, R.: On cycle permutation graphs. Discrete Math. 51 (1984), 265–275. DOI 10.1016/0012-365X(84)90007-4 | MR 0762319 | Zbl 0559.05053
[10] Stueckle, S.: On natural isomorphims of cycle permutation graphs. Graphs and Combinatorics 4 (1988), . DOI 10.1007/BF01864155 | MR 0922162
Partner of
EuDML logo