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Czechoslovak Mathematical Journal, 47 (122) (1997), Praha 

ON THE CLASSIFICATION AND TOUGHNESS OF GENERALIZED 

PERMUTATION STAR-GRAPHS 

CHONG-YUN CHAO and SHAO-CEN HAN, Pittsburgh 

(Received September 15, 1994) 

Abstract. We use an algebraic method to classify the generalized permutation star-graphs, 
and we use the classification to determine the toughness of all generalized permutation star-
graphs. 

1 . INTRODUCTION 

The graphs which we consider here are finite, undirected, loopless and simple. Let 

X = (V1,E1) be a graph where the vertex-set Vi = Vi(X) = {t>n,v12 ... ,vln} and 

E1 = E(X) is its edge-set, and o be a permutation on Vi. A permutation X-graph 

(X,o) is a graph with 2n vertices, V(X,o) = V1 U V2 where V; = {v^,vi2,.. .vin} 

for i = 1,2 and Vi n V2 = <p, and E(X,o) = Ex U E2 U E12 where Ex = E(X), 

E2 = {[v2t,v2s]; [vlt,vls] e Ex} and E12 = {[vlt,v2s]; o(vlt) = vls}. 

Example 1. Let C5 be a 5-cycle with V(C§) = {^11,^12,^13,^14,^15} and 

o = 

For simplicity, we shall write o as (1)(2453). Permutation C5-graph (C5,<j) is the 

Petersen graph. 

Permutation graphs were first considered by Chartrand and Harary in [3]. Dorfler, 

in [5] and [6], obtained some interesting results on automorphisms and isomorphisms 

of permutation graphs. Here, we shall consider a generalization of permutation 

graphs. 

Let m be an integer ^ 2 . X = (Vi,L?i) and o be a permutation on Vi. A gen­

eralized permutation Xm—graph, denoted by (Xm,cr), is a graph with ran vertices, 
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V(Xrn,a) = Vi U V2 U ... U Vm where V{ = {viUvi2,... ,vin] for i = 1,2,... ,m, and 
VJnl^j = if for i 7- j , and E(Xm, a) = (E\UE2U.. .UEm)U(Eh2UE2}3U.. .uJSm_i>m) 
where £*i = -©(X), .B» = {[vit,ViS]; [vit, vi5] G £1} for i = 2 , 3 , . . . , m, and Eji<j+l) = 
{[vjt.v(j+i)s]> r ( i ' i t ) — v is} where r = a for j an odd integer and 1 ^ j -̂  m — 1, 
and r = ( j - 1 (the inverse of <r) for j an even integer and 1 ^ j ^ m — 1. 

Example 2. Let X be the following graph with 3 vertices: 

vu_ Ul2 ÎI13 

and cr = (123). The permutation graph (X2, a) is the following graph with 6 vertices: 

^21 1I22 ^23 

The generalized permutation graph (X3,a) is the following graph with 9 vertices: 

V\i Vi2 U13 

where a * = (132) is used. The adjacency matrix A = A(X) of X with the ordering 

^11,^12,^13 and the permutation matrix Pa corresponding to a are respectively: 

and 

We order the vertices of (X2,a) as vn,iIi2, ^13,^21, ^22, ̂ 23- Then the adjacency 
matrix A(X2, a) is the following 6 x 6 matrix consisting of four 3 x 3 block matrices 

\П A2) 

where A\ = A2 = A and Pl(= Pa

l) is the transpose of Pa. We also order the 
vertices of (X3,a) as vn,v\2,^13,^21,^22,^23,^31,^32,^33. Then the adjacency ma­
trix A(X3,a) is the following 9 x 9 matrix consisting of seven 3 x 3 nonzero block 
matrices and two 3 x 3 zero block matrices 
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where Ai = A% = A3 = A,P*(= Pa

l) is the transpose of Pa and each of the blank 

entries is a 3 x 3 block matrix with all entries being zero. 

Here our purposes are: 

1. Use an algebraic method to obtain some results on the isomorphisms and 

automorphisms of generalized permutation graphs. Some of our results are general­

izations of those in [5] and [6]. Our algebraic method depends on the Lemma A, on 

p. 480 in [1] which states: Let X and Y be graphs, o be a one-to-one map of V(X) 

onto V(Y), and Pa be the permutation matrix corresponding to o. Then o is an 

isomorphism of X onto Y if and only if 

(1) A(X)Pa=PaA(Y). 

On p. 489 in [1], Corollary A.l states: Let X be a graph, o be a permutation of V(X), 

and Pa be the permutation matrix corresponding to o. Then o is an automorphism 

of X if and only if 

(2) A(X)Pa = PaA(X). 

2. We shall use our results on isomorphisms and automorphisms to classify gener­

alized permutation star-graphs. . . star-graph with n + 1 vertices, n ^ 1, is a complete 

bipartite graph K(l, n) with n + 1 vertices having one vertex of degree n and each of 

the other n vertices of degree 1. In the Example 2 above, X is a star-graph K(l, 2). 

3. We shall use our classification to determine the toughness of all generalized 

permutation star-graphs, i.e., to determine the toughness of ((K(l, n ) ) m , o) for every 

positive integer n, every integer ra ^ 2 and every permutation o in the symmetric 

group S n +i on n + 1 vertices. The toughnesss of a graph X, t(X), is defined as 

t(X) = mini 151 
ш(X - S) 

where the minimum is taken over all disconnecting sets S of V(X), \S\ is the cardi­

nality of S, and w(X — S) is the number of components of the induced graph X — S. 

(See [4].) 
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2. ISOMORPHISMS, AUTOMORPHISMS AND CLASSIFICATION 

Lemma 1. Let m be an integer ^ 2. X be a graph with n vertices, G(X) be 

its group of automophisms, a and JJ, be permutations on V(X), and (Xm,a) and 

(Km,/i) be generalized permutation graphs. If there exists an a in G(X) such that 

a~laa = /i, then (Km,cr) and (Xm,fi) are isomorphic. 

P r o o f . Let a' = (a, a,..., a) be a map from V(Xm, a) = Vi U V2 U . . . U Vm 

to V(Xrn,a) defined by a'(V\) = a(V\) and a'(vjt) = Vjs if and only if a(v\t) = v\s 

for t = 1,2,..., n, and j = 2 ,3 , . . . , m. Then a' is a permutation of V(Xrn, a). We 

order the vertices in V(Xm,a) lexicographically, i.e., in the following order: 

^ 1 1 , ^ 1 2 , • • >,Vln,V2i,V22, . . .,V2n, . . . ,Vml,Vm2, . . . , V m n . 

Thus, the corresponding permutation matrix is 

Pы = 

{Pa 

V 

Pa 
= (dmg.{Pa,Pa,...,Pa)) 

PaJ 

where Pa is the permutation matrix corresponding to a, and the adjacency matrix 

of (Xm,a) is 

/AІ Pa 

A(Xm,a) 
P* Aг 

V 

\ 

Am-i Pf* 

P? ť Am ) 

where A\ = A2 = A3 = . . . = Am = A, Pa is the permutation matrix corresponding 
to a and Pf- t = P* if m is an odd integer, and P^ l = P~l = Pa if m is an even 
integer. 

Since a G G(X), by using (2), a~laa = JLL, and the isomorphism of the symmetric 
group Sn on n vertices and the group of n x n permutation matrices, we have 

p-,1A(Xm,a)Pa,= (diag. (P-l,p-1,...,Pa
1))A(Xm,a)(diag. (Pa,Pa,... ,Pa)) 
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f PQL -^1XOL 1 a POPQL 

PQL P(JPOL PQL A2P0L PQL P^Pot 

V 
(Ai P,* 

í A2 _ M 

Pa - 4 m _ i P a Pa P^. Pa 

p-ip-ғ t p p-1,4 P / 
x

a

 xa гot ГQL ^"mгot / 

Pï. A2 P* 

-4-m — 1 Pџ 

P?ŕ Am I 

= A(Xm,џ). 

By using (1), (Xm,cr) and (Km,/i) are isomorphic. D 

Corollary 1.1. Let a G G(X). Then a' = (a, a , . . . , a) belongs to the group of 

autormorphisms, G(Xm,cr), of (Km,cr) if and only if aa = aa. 

P r o o f . If aa = aa, then by Lemma 1 and (2), a1 G G(X m ,cr). Conversely, if 

a' G G(X m ,cr), then, by (2), we have 

I.Є., 

P-Í л 2 PЇ 

v 
/ Л ! Р-'Р.Р 

P~lP*Pa A2 

Am-l P** 

Pìl Am ì 

p - l p p 
•* OL X <TX OL 

Am-l PQC PØ POL 

p-lp±tp д 
1
 OL

 x a x
 OL

 л m 

Thus, Pa = P~lPaPa and aa = aa. • 

Remark. In our Corollary 1.1, if X and cr are given, how do we find a G G(X) 

such that a' = (a ,a) G G(K,O), i.e., which a in G(X) such that acr = aa? The 

435 



answer is that we have to find the centralizer ring, R((a)), of the cyclic group, (a), 

generated by a. Then take the intersection of G(X) and R((a)). In general, there 

are not "many" such permutations a, although the intersection is not empty. In 

[1] and [2], there is an algorithm to find R(H) for any given permutation group H. 

R(H) is also a finite dimensional vector space over a field. The algorithm is to find a 

basis for the vector space. For instance, consider the Petersen graph (X, (1)(2453» 

where X is the 5-cycle with V(X) = {1,2,3,4,5}. Then G(X) is the dihedral group 

generated by (12345) and (1)(25)(34), and R(((l)(2453))) is 

(au ai2 aí2 aí2 ai2\ 
a2\ a22 a23 as2 a2^ 

0>21 O32 CL22 G&25 &23 

^21 ^23 <^25 a22 032 

\Q>21 ^25 ^32 ^ 2 3 ^ 2 2 / 

; ӣij Є {0,1} 

Consequently, G(X) n #(((1)(2453)» consists of the identity and (1)(25)(34) per­

mutations. We know that the group of automorphisms of the Petersen graph is 

isomorphic to 5s on 10 points. (See [7]). 

L e m m a 2. Let X be a graph with n vertices, G(X) be the group of automor­

phisms of X, and Sn be the symmetric group on n vertices. 

(a) If a and \i are in the same right coset of G(X) in Sn, then the generalized 

permutation graphs (Xm, a) and (Xm, /» are isomorphic for any integer m ^ 2. 

(b) If a and ji are in the same left coset of G(X) in Sn, then the generalized 

permutation graphs (Xm, a) and (Xm,/j>) are isomorphic for any integer m ^ 2. 

P r o o f , (a) Since a and Lt belong to the same right coset of G(X) in Sn, there 

exists a (3 G G(X) such that a = fifi. Let e be the identity permutation on G(X), 

and 

ß' 
(ß,є,ß,є,...,ß,є), 

(ß,є,ß,є,...,ß), 

if m is even, 

if m is odd, 

be a map from V(Xm,a) = Vi U V2 U . . . U Vm to V(Xm,a) defined by /3'(Vi) = 

0(Vi),(3'(vjt) = e(vjt) = vjt for t = 1,2,. ..,n and j being even and 2 ^ j ^ m, 

and /3'(vit) = vu if and only if P(vu) = vis for t = 1,2,..., n and j being odd and 

2 < j ^ m. Then /3' is a permutation of V(Xm, a). Let P£ = In be the n x n identity 

436 



matrix. Since a = PfJ^Pp Pa — -°p, and 

P^xA(Xm,a)Pp. 

= (diag(Pj\ln,P^,In,.. .))A(Xm,a)(diag(P0,In,P0,In,...)) 

(PßXAxPß 

PÌPß 

PßXP° 
A2 

PßXP« 

\ 
PÌPß 

P^AзPß P^P, 

(Ai Pџ \ 
Pџ A% Pь

џ 

Pџ A3 Pџ 

\ ••• ) { : ) 
= A(Xm,fi) 

where (2) is used. By (1), (Xm,a) and (Xm,fi) are isomorphic, 

(b) Similar to (a), there exists a 7 £ G(X) such that a = ^7 . Let 

7 = 
(є,7,є,7,...,є,7), 

(є,7,є,7,...,7,є), 

if m is even, 

if m is odd, 

be a map from V(Xm,a) = Vi U V2 U . . . U Vm to V(Xm,a) defined by -y'(vjt) = 

e(vjt) = Vjt for £ = 1,2,. . . , n and j being odd and 1 ^ j -̂  m, and 7/(t>it) = i>iS if 

and only if 7(1;^) = ViS for £ = 1,2,.. . , n, and z being even and 1 < i ^ m. Then 7' 

and (7 ; ) _ 1 a-*e permutations of V(Xm,<r). Since a = ^,PaP~l = PM, and, similar 

to (a), we have 

(P~1)-1A(Xm,a)p-1 = A(Xm,/.i). 

By (1), (Xm,cr) and (Xm,n) are isomorphic. 

For m = 2, our Lemma 2 is the same as Theorem 9 and Theorem 9' in [5]. D 

Theorem 1. Let m be an integer ^ 2, X be a graph with n vertices, G(X) be its 

group of automorphisms, Sn be the symmetric group on n vertices, and N(Xm) be 

the number of nonisomorphic classes of generalized permutation Xm—graphs. Then 

1 ^ N(Xm) < |5Я| 
\G{X)\' 

i.e., N(Xm) is bounded by the index ofG(X) in Sn for any integer m ^ 2. 

The p r o o f follows from Lemma 2. D 

We note that if X is the complete graph or the null graph jNn, then G(X) is Sn 

and N(Xm) = 1 for any integer m ^ 2, i.e., (Xm,a) _c (Xm,e) for any a G Sn and 
any integer m ^ 2. 
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Theorem 2. The number of nonisomorphic classes of generalized permutation 

star-graphs with n + 1 vertices is 2 for each integer n ^ 2, i.e., N((I_"(l,n))m) = 2 
for each integer n ^ 2 and for each integer m ^ 2. 

(We note that N((K(1, l ) )m) = N((K2)
m) = 1 for any integer m ^ 2.) 

P r o o f . For n ^ 2, let X = K(l,n) be a star-graph with V(K(l,n)) = 

{vn ,v i2 , . . . ,vi n+i} where the degree of v\\ is n, and the degree of vu is 1 for 

i = 2 , 3 , . . . ,n + 1. Clearly, G(K(l,n)) is {cr £ Sn+i; O('vii) = i>n} of order n!, and 

it is,isomorphic to Sn . The number of right cosets of G(K(l,n)) in Sn+i is n + 1. 

We claim that these n + 1 right cosets of G(K(l,n)) in Sn+i can be represented 

as 

G(K(l,n)),G(K(l,n))(12),G(K(l,n))(13),...,G(K(l,n))(l(n + l)), 
n+1 

i.e., they are pairwise disjoint, and Sn+i = G(K(l,n)) |J (G(K(l,n))(li)). Suppose 
i=2 

that for i ^ j , a G G(I_~(l,n))(li) fl G(I_"(l,n))(lj). Then there exist a and 0 

in G(I_~(l,n)) such that a = a( l i ) and cr = fi(lj). If a(i) = fc and /3(j) = #, 

then a = (lifc...) and a = ( l jg . . . ) . Since i ^ j , this is a contradiction, and 

G(K(l,n))(li)nG(K(l,n))(lj) = <p for i,j = 2 , 3 , . . . ,n + 1, and i ^ j . Since each 

coset contains n! permutations in Sn+i, 

Sn+1=G(K(l,n))u\J(G(K(l,n))(li)) 
П+l 

u< 
ż=2 

It follows from Lemma 2 (a) that for any two permutations Oi, a2 in the same right 
coset, the generalized permutation graphs ( ( K ( l , n ) ) m , Or) and ((I_"(l,n))m,O2) are 
isomorphic. 

We claim that for any permutation (li), i = 3,4,... ,n + 1, the generalized per­
mutation star-graphs ((K(l,n))m, (li)) and ((K(l,n))m, (12)) are isomorphic. Since 
( 2 3 . . . (n + 1)) eG(X) and 

((23 . . . (n + l ) ) i " 2 ) - 1 ( 1 2 ) ( 2 3 . . . (n + l ) ) ^ 2 = (li), 

by Lemma 1, ((I_"(l,n))m, (li)) and ((K(l,n))m, (12)) are isomorphic for i = 
3,4, . . . ,n + l. 

We show that for the permutation (12) and the identity permutation e in S n +i, 
the generalized permutation star-graphs ((K(l,n))m,s) and ((K(l,n))m, (12)) are 
not isomorphic. 

Every cycle in ((K(l,n))m,e) is of even length. But in ( ( K ( l , n ) ) m , (12)), the 
cycle t>n - t>22 - ^2i - ?I23 - U13 - ^ n -s of length 5. Thus, ((K(l,n))m,£) and 
((K(l,n)m, (12)) are not isomorphic, and the number of nonisomorphic classes of 
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generalized permutation star-graphs with n + 1 vertices is 2 for each integer n ^ 2 

and for each integer m ^ 2. • 

3. T H E TOUGHNESS 

We shall determine the toughness of((If (l,n))m,cr) for every positive integer n, 

every integer m ^ 2 and every permutation a in the symmetric group 5 n +i on 

n + 1 vertices. By using our classification, we only need to consider the toughness 

of ((If ( l , n ) ) m , e ) and the toughness of ((i\T(l,n))m, (12)) for every positive integer 

n and every integer m ^ 2. 

Theorem 3. Let m and n be integers such that m ^ 2 and n ^ 1, X = K(1, n) 

be a star-graph with n + 1 vertices, and (K m , a) be a generalized permutation star-

graph. Then 

i, 

Зm — 1 

t(Xm,є) = { 
Зm + ť 

n = 1 and m ^ 2, 

n = 2. m even and m ^ 2. 

n = 2, m odd and m > 2, 

[™--ljn.4_ [I2±2] 
7 - ^ n T^r-rr> 3 ^ n ^ m + 1 and ?n ^ 2, 

m 
v. n 

n ^ m + 2 and m ^ 2, 

where [y] is the largest integer ^ y , and 

(i) 

(Ü) 

(ІІІ) 

(iv) 

(v) 

tŕД m ,(12)) = 
(n — 1) + m 

, n ^ 1 and m ^ 2. (vi) 

In order to prove Theorem 3, we need the following lemmas. 

Lemma 3. 

Г m - 1 ln4- f m + 2 l 
t{X

m,є)^[~^ J + l 2 J 

[-2±-]n + [---
< 1 for n ^ 3 and m ^ 2. 
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P r o o f . Let 5 = 5i U 5 2 U . . . U 5 m be the disconnecting set of (Xm, e) with 

Si = {vn} for i being odd and 1 ̂  i < m - 2, 

Sk = {vkj ; j = 2 , 3 , . . . , n + 1} for k being even and 1 < k < m — 2, 

f {^m-!).}, if m is even, and 
Sm-l = < 

[ {v(m-i)j ; 3 = 2 , 3 , . . . , n + 1}, if m is odd, 

and 
Sm = K l } -

If m is even, then the components of the induced graph (Xm, e) — 5 are: {v\j} for 

j = 2 , 3 , . . . , n + l,{L>2i},{tI3j} for j = 2 ,3 , . . . , n + 1, {v 4 i } , . . . {[v(m_i)j, vmj]} for 

j = 2 , 3 , . . . , n + l . 

If m is odd, then the components of the induced graph (Xm, e) — S are: {v\j} for 

j = 2,3, ...,n + l,{i;2i},{v3j} fori = 2,3, . . . ,n + 1, {v4i}, •••, {v(m-i) i}, {vmj} for 

j = 2,3, . . . , n + l. 

Thus, we have \S\ = [~-f--]n + [ m ^] ,a ; ( (K m , £ ) - 5) = [ ^ ] n + [2-f±], and 

i-?i ^ t ^ n + m 
Ц(X™,є)-5) [ f ] n ł [ ^ l ] 

ť(Xm, є) < — — = L__J MTT for n ^ 3 and m ^ 2. 
v 7 ' ^ . .fíлrm _\ oч ľ m + П „ i Гm — П -^ ^ 

151 
We claim that —— < 1. If m is even and n>Z, then 

w ( ( X « , e ) - 5 ) 

I-5! _ ( ^ J n + í ^ ) _ nm-2n + m + 2 

ш((Xm,є)-S) ~ (ş)n+(î-=--) nm + m - 2 

If m is odd, then 

/V« . I5I (2Sfi)« + (:rifi) ™ - n + m + l t(X e) < — = 2 v * ' — < i 

V ' J^ u((X™,e)-S) (2d-I) n + (-2Sfi) nm + n + m - 1 

We note that Lemma 3 also holds for n = 2, m odd and m > 2. • 

Lemma 4. 

m 
£(Xm, (12)) ^ < 1 for n ^ 2 and m ^ 2. 

(n — 1) + m 
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P r o o f . Let 5 = 5i U 52, U . . . U 5 m be the disconnecting set with Si = {vu} 

for i = 1,2,..., m. Then the components of the induced graph (X171, (12)) — 5 are 

{vi2} for i = 1,2,..., m and the chains 

vij - v2j - • • • - vmj, for j = 3,4,..., n + 1. 

Thus, | 5 | = m, and u;((Xm, (12)) - 5) = (n - 1) + m, and 

151 m 
*(K m , (12)) ^ — ]—L- = < 1 for n ^ 2 and m ^ 2. 

V , V JJ^UJ Xm, 12 - 5 n - 1 + m 

Let F ( K m , a) = {5 C y(Km,O-); ^x^-s) = * ( * m ^ ) } > and 5 = | J Si where 

5 f = SnV(Xi) for 2 = 1,2,...,m. 

D 

y-7= = ц_л , o j - , ČШU o -= 
- 1 

Lemma 5. If S eF(Xrn,e), then S{ 7- (p for i = 1,2,... ,m. 

P r o o f . Case 1. Si = <p and 5;+i ^ (D, 1 ^ i ^ m - 1. 

Case 1.1. V(t+i)i ^ 5i+i. We claim that none of V(i+i)j E 5;+i for j = 2 ,3 , . . . , n + 

1. Suppose the contrary, i.e., f(t+i)j E £;+i for some j € {2,3, ...,n + 1}. Let 

SJ+1 = 5t+ i \ {v(t+i)j}, and 5 ; = 5i U . . . U 5t U 5<+1 U 5 i + 2 U . . . U Sm. Then 

15'I = | 5 | — 1. If there is a comnouent C of the induced graph (Km , e) — S such that 
v(i+2)i E C a n c - ^ti ^ C where z + 2 -̂  m, then we have 

u((Xm,e) - S1) =u((Xm,e) - S) - l . 

(The case of i + 2 > m belongs to the case of having no such component.) 

If there is no such component C, then 

uj((Xm,s) - 5') = u;((Km, e) - 5) > u;((Km, e) - S) - 1. 

Thus, in any case, we have 

\S'\ | S 1 - 1 \s\ 

u>((Xm,e) - 5') " u((Xm,e) - 5) - 1 UJ((X™,S) - S) 

where Lemma 3 is used, i.e., £(Xm,€:) = ^( (x^L-g) < 1 is used. That is a contra­

diction to S e F(X7n,e). 

Case 1.2. V(t+i)i E 5»+i.. We claim that none of ^(t+i)j E 5i+i for j = 2 , 3 , . . . , 

n + 1. Suppose the contrary, i.e., f(i+i)j E 5i+i for some j E {2,3,...,n + 1}. By 
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using the same reasoning as in the Case 1.1, we have a contradiction. Consequently, 
Si+1 ={v(.+i)i}. Let 5 ^ ! = S i + i \ { i ; ( i + 1 ) 1 } a i i d 5 " = 5 i U . . . U 5 . U 5 ^ 1 U 5 i + a . . . U 
Sm. Then u((Xm,e) - S") > u((Xm,e) - 5) - 1, and 

\S"\ \S\-1 ^ \s\ 

u;((Xm, e) - S") u((X™,e) -S)-l u>((Xm,e) - S) 

That is a contradiction to S G F(Xrn,e). 

By the Case 1.1 and the Case 1.2, we know that S t+i = <p, i.e., the case S; = <p 

and S t + i T--(^, 1 - ^ i ^ m — 1, does not exist. 
Case 2. Si = p and S;_i 7- <p for 2 ^ i ^ m. 
Case 2.1. iI(;_i)i ^ S;_i. Similar to the proof of the Case 1.1, we know that none 

of V(i-i)j G Si-i for j = 2 ,3 , . . . , n + 1. 

Case 2.2. t?(i_i)i G S;_i. Similar to the proof of the Case 1.2, we know that it is 
impossible, i.e., S;_i = <p. 

By the Case 2.1 and the Case 2.2, we know that S;_i = (p, i.e., the case Si = <p 

and S;_i 7-- <p for 2 -̂  i ^ m does not exist. 
Since (Xm,e) is connected and S G F(Km,e), S ^ p. Say Sk ^ <p for some k such 

that 1 ^ fc ^ m. Repeatedly using the Case 1, we have Sk-i / <p, Sfc_2 7- </?, . . . , 
Si 7-= <p. Repeatedly using the Case 2, we have Sk+i 7- </?, Sfc+2 7-= </>,. •., Sm ^ <p. 
Hence, if S G F(Xm,e), then S, 7-: </> for i = 1,2,... ,771. D 

Lemma 6. If S G F(Km,(12)). then S; 7- (D for i = 1,2,... ,m. 

P r o o f . Case 1. Si = p and S t + i 7-̂  </?, 1 ^ i ^ m — 1. 
Case 1.1. V(i+i)i £ Si+i. The proof for the case that none of v^+^j G S l + i 

for j = 3 ,4 , . . . , n -f- 1 is the same as the Case 1.1 in Lemma 5. We claim that 
V(i+i)2 i Si+i. Suppose the contrary, i.e., V(t-+i)2 G S i + i . Let S-+1 = Si+i\{v(i+l)2}, 
and S' = Si U . . . U S{ U S<+1 U S{+2 U . . . U S m . Then |S ' | = \S\ - 1. If there is a 
component C of the induced graph (Km , (12)) — S such that V(i+2)i G C and vn £ C 
where i -f- 2 -̂  m (The case of i -f 1 > m belongs to the case of having no such 
component.), then we have 

u;((Xm, (12)) - S') = u;((Xm, (12)) - S) - 1. 

If there is no such component C, then 

u((Xm, (12)) - S') = u;((Xm, (12)) - S) > u;((Km, (12)) - S) - 1. 

Thus, in any case, we have 

\S'\ . | 5 | - 1 ^ |S| 
w((Xm , (12)) - S') ^ u((X™, (12)) - 5) - 1 u((Xm, (12)) - S) 
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where Lemma 4 is used, i.e., t(Xm,(12)) = aMx™ (i2))-s) < * 1S use(^- That is a 
contradiction to 5 G F(Xm, (12)). 

Case 1.2. ^+1)1 G 5i+i . By using the same reasoning as in the Case 1.1, we know 
that none of v^+^j € 5;+i for j = 2 ,3 , . . . , n + 1. Thus, 5;+i = {^(i+i)i}. Using the 
same reasoning as the Case 1.2 in Lemma 5, we have 5 t+i = <D. By the Case 1.1 and 
the Case 1.2, we know 5;+i = <D, i.e., the case Si = <D and 5;+i ^ - ( D f o r l - ^ i ^ r a — 1 
does not exist. 

Case 2. 5; = </? and 5;_i 7- <D for 2 ^ i -̂  m. 

Case 2.1. f(i_i)i ^ 5z_i. Similar to the proof of the Case 1.1, we know that none 

of v(i-i)j € Si-i for i = 2 , 3 , . . . ,n + 1. 
Case 2.2. V(;_i)i G Si-i. Similar to the proof of the Case 1.2, we know that it is 

impossible, i.e., 5;_i = <p. 
By the Case 2.1 and the Case 2.2, we know that 5;_i = </>, i.e., the case 5» = <p 

and 5;_i 7- <D for 2 -̂  i -̂  ra does not exist. 

Similar to Lemma 5, repeatedly using the Case 1 and the Case 2, we have 5t- 7- <D 

for i = 1,2,... ,m. D 

Lemma 7. Let X G F(Xm,e). If vn G Si} for i = 1,2,... ,m, then v{j £ 5. for 
j = 2 ,3 , . . . , n + l. 

P r o o f . Suppose the contrary, i.e, Vij G Si for some j such that 2 -̂  j -̂  n + 1. 
Then let 5< = S{\ {v{j} and 5 ' = 5i U . . . U 5,_i U S[ U 5 t+i U . . . U 5 m . Thus, 
\S'\ = \S\ — 1. If there is a component C of the induced graph (Xm, e) — 5 such that 
one of ^(z-i)j and V(i+X)j belongs to C and the other does not (The case of i = 1 or 
i = ra belongs to the case of having no such component.), then 

uj((Xm,e) - S') =u>((Xm,e) - S) -1. 

If there is no such component C, then 

u((Xm,e) - S') = u,((X"\e) - 5) > w((X"\e) - S) - 1. 

Thus, in any case, we have 

| 5 ' | | S | - 1 |S| 

u;((X™,e) - 5') ^ cj((X^,e) - 5) - 1 w((-Y™,e) - 5) 

| 5 | where the Lemma 3 is used, i.e., t(Xm,e) = — < 1 is used. That is a 
u((X™,e)-S) 

contradiction to 5 G F(Xm, e). D 
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Lemma 8. Let S G F(Xrn, (12)). 

(a) If va G Si, for i = 1 ,2,3, . . . , m, then v^ £ Si for j = 3 ,4 , . . . , n + 1. 
(b) If Vi\ G Si, then vi2 £ Si for i = 1,2,..., m. 

P r o o f . (a) We replace 2 ^ j ^ m, (Xm ,£), and Lemma 3 in the proof of 
Lemma 7 by 2 < j ^ m, (X171, (12)), and Lemma 4 respectively. 

(b) We replace Vij, 2 -̂  j ^ m, (Xm ,e) , V(»_i)j, U(;+i)j, and Lemma 3 in the proof 
of the Lemma 5 by t>t2, j = 2, (Km , (12)), V(i_i)i, V(i+i)i and Lemma 4 respectively. 

• 

Lemma 9. Let S e F(Xm,e). Then vn e Si and vml G S m . 

P r o o f . Suppose that vn £ Si. By Lemma 5, Si ^ <D. If i>ij G Si for some j 
such that 2 ^ j ^ n + 1, then let S[ = S1/{vlj) and S' = S[ U S2 U . . . U S m . Thus, 
| 5 ' | = \S\ - 1. If there is a component C of the induced graph (Xm ,£) — 5 which 
contains only one of vu and L>2j, then 

u>((X™,e) - S') =u>((X™,e) - S) -1. 

If there is no such a component C, then 

u>((Xm,e) - S') = cj((Xm,e) - S) > cj((Km,e) - S) - 1. 

T h u s > c,((x'?i)-S') ^ u,((x>»l~)-s)-i < c( (x 'v)-5) w h e r e Lemma 1 is used, i.e., 
£(Xm,£r) = /(xJ,t [)_S) < 1 is used. That is a contradiction to S G F(Xrn,e), and 
fn G Si. Similarly, vml G Sm . D 

Lemma 10. Let S G F(Xm, (12)). Then vn G Si and v m i G S m . 

P r o o f . Suppose that vn ^ Si. By Lemma 6, Si 7-= <D. If i>ij G Si for some j 
such that 2 < j < n + 1, then let S[ = S1/{vlj} and S = Si U S2 U . . . U S m . thus, 
|S ' | = \S\ — 1. If there is a component C of the induced graph (Km , (12)) — S which 
contains only one of v\\ and v2j for 2 ^ j ^ n + 1 or contains only one of ^ 1 and 
v22, then 

u;((Xm, (12)) - S') = u;((Xm, (12)) - S) - 1. 

If there is no such a component C, then 

u>((Xm, (12)) - 5') = u>(X™, (12)) - S) > co((Km, (12)) - 5) - 1. 

T h u s > u,«x™\U))-S') ^ u,((x-!i2))-S)-i < .((xAtk)-s) w h e r e L e m m a 4 i s u s e d ' 
i.e., r(Xm ,(12)) = ^((x™ (i2))-s) < 1 -s used. That is a contradiction to 5 G 
F(XTn, (12)) and v n G Si.' Similarly, vml e Sm. D 
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Lemma 11. There does not exist any S in F(Xm,e) with the property that 

vn $ Si and f( l+i)i ^ Si+\ where 1 ^ i ^ m - 1. 

P r o o f . Suppose the contrary, i.e., there existed a S G F(Xm,e) with the 
property that vn £ Si and ^(*+i)i ^ Si+ 1 where 2 -̂  i -̂  m — 1. Since Si 7- <p by 
Lemma 5, there would be a Vij G Si for some j such that 2 ^ j ^ n + 1. 

Let S< = SAIL^} a n d S ' = 5 1 U . . . U 5 i _ i U 8 ; u S i + 1 U . . . u S m . Then |S ' | = | S | - 1 . 
If V(i+i)j is in the induced graph (Xm,e) — S, then v^+i^j,v^+i)i and vn are in the 
same component, since vn £ Si and i!(;+i)i ^ S l + i . If there is a component C in the 
induced graph (Xm ,£) - S which contains only one of f(i_i)j and ita, then 

->((Xm,e) - S') = w((Xm,e) -S)-l. 

(The case of i = 2 belongs to the following case.) If there is no such a component C, 

then 

u((Xm,e) - S') = u((Xm,e) - S) > u>((Xm,e) - S) - 1. 

Thus, 

\S'\ „ | 5 | - 1 ; |S | c 1 

u((Xm,e) - S') uj((Xm,e) - S) - 1 _>((-Ym,e) - S) 

ISI 
where Lemma 3 is used, i.e., £(Km,£) = —— -— < 1 is used. That is a v y w((.X™,e)-S) 
contradiction to S G F(Xrn,e). Hence with vn G Si (Lemma 7), there does not 
exist any S G F(Xm,£) with the property that vn G Si and U(t+i)i ^ S;+i where 
1 ^ i ^ m - 1. • 

Lemma 12. There does not exist any S in F(Xm, (12)) with the the property 

that vn £ Si and iI(l+i)i ^ S t + i where 1 ^ i ^ m - 1. 

P r o o f . Suppose the contrary, i.e., there existed a S G F(Xm,(12)) with the 
property that vn g Si and f(i+1)i ^ S;+1 where 2 ^ i ^ m - 1. Since Si ^ ip by 
Lemma 6, there would be a v^ G S; for some j such that 2 ^ j ^ n + 1. There are 
two cases: 

Case 1. j = 2, i.e., i;^ G S;. We may assume that i is the smallest positive 
integer with the proprety vn £ S, and V(t+1)1 ^ S t + 1 . Since by Lemma 10, Vn G Sx 

and Vmi G S m , we have 1 < i < m. That means that for 1 < i < m, there 
are Si-\,Si,Si+\ in S such that V(t_1)1 G Si-\,vn fi Si and V(i+1)i $ S;+1 . Let 
Ŝ  = Si \ {vi2} and S' = Si U . . . U Si_i U S'{ U S i +i U . . . U S m . Then \S'\ = |S | - 1. 
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If there is a component C in the induced graph (Xm, (12)) - 5 which contains 
only one of the vertices vn and U(;+i)i, then 

oj((Xm, (12)) - S') = w((Xm, (12)) - 5) - 1. 

If there is no such component C, then 

u,((Xm, (12)) - S') = LO((X™, (12)) - 5) > u,((Xm (12)) - 5) - 1. 

Thus, 

\s'\ ^ \s\-i ^ \s\ ^ i 

uv((X™, (12)) - 5') ^ u;((X-,.(12)) - 5) - 1 u((X™, (12)) - 5) 

igi 
where Lemma 4 is used, i.e., t(Xm, (12)) = —— — < 1 is used. That is a 

V 'V n u((X™,(12))-S) 
contradiction to 5 G F(Xm, (12)) with the property that vn £ Si and V(i+i)i ^ 5 l + i 
for 1 ^ i ^ m — 1. 

Case 2. j > 2, i.e., v^ G 5; for some j such that 2 < j ^ n + 1. The proof is 
similar to the one in Lemma 11. • 

Lemma 13. Let S G F(X7n,e) and [ f ] be the largest integer ^ f. Then 

\S\ ^ F ]̂n + m 
^ 

u,( (X™,s)-5) ^ [^±i]n + [ - ^ ] 

for 3 ^ n ^ m + 1 and m ̂  2, and ^UX'^-S) ^ ^ for n ^ m + 2 and m ^ 2. 

P r o o f . By Lemma 5, we know that Si ^ <D for i = 1,2,..., m. By Lemma 9, 
^n £ 5i and vmi G 5 m . By Lemma 7, 5i = {vn} and 5 m = {vm i}. Thus, 
let 5 i 1 ? 5i 2 , . . . ,5^. be the ones with u;pi ^ Siv for p = 1,2, ...,j, and 1 < ii < 
i2 < ... < ij < m, and |5-.p | = kp for p = 1, 2 , . . . , j . Then we have 

(3) 151 - ( É i5v i) + (w - i) = Í E fc
P) + (m - -o-

By Lemma 11, we know that (ip + 1) < ip+i for p = 1,2,... , j - 1. Consider the 
induced graph from Xi to X;x, denoted by [X i ,X ;J , of X1UX2U.. .UX^ - iUX^ . If 
v(ii)q ^ S^ for 2 -̂  a; ̂  n + 1, then the chain viq—V2q — ... — U^-i)^ is a component 
in [Xi, X*!,]. 
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If V({l)r £ Sh for 2 ^ r ^ n + 1, then the chain L>ir — i>2r — • •. — V(ix)r is in the 
component which contains V(h)i in the induced graph [X i jX iJ. Hence, the number 
of components in [X,, X;J is |5Zl | + 1 -=- ki + 1. 

Consider the induced graph from Xi to Xt-2, [Xi, X2l, Xi2], of Xi U X2 U. . . U XZl U 

X;1+i U . . . U Xi2. If v^g E 5 t l and V(i2)q E Si2 for 2 ^ q ^ n + 1, then the chain 

V(il+i)q - V(il+2)q - . . . - V(i2_i)q is a component in [ X ^ X ^ X . J . Let fci2 be the 

number of such components in [X i ,X t l ,X i2] . If V({l)q £ 5 t l and V(i2)q G Si2 for 

2 -̂  q ^ n + 1, then the chain V(ix)q — V(il+i)q . . . — V(i2_i)q is in the component which 

contains v^i. If V(i-)9 £ 5 t l and V(i2)q £ 5 l 2 for 2 -̂  q ^ n + 1, then the chain 

^( t l+i)q- 'i;(i1+2)g-.. .--V(i2)9 is in the component which contains V(i2)i. Ifv(ri)g £ 5,, 

and V(,2)g £ 5,2 for 2 -̂  q ^ n + 1, then the chain v^jg -V(,1 + i)9 - . . .-V(i2)q is in the 

component which contains ^(Zl)i and V(i2)i- Thus, the total number of components 

in [Xi, Xtl, Xt-2] is ^ (ki + 1) + (ki2 + 1). Similarly, the total number of components 

in [Xi, Xh, Xt-2, X,3], is ^ (ki + 1) + (fci2 + 1) + (k23 + 1) • • •• The total number of 

components in [Xi, Xh, X,2,..., X{j] is ^ (ki + 1) + (k12 + 1) + (k23 + 1) + • • • + 

(k(j-i)j + 1). Clearly, kr(r+i) ^ kr and kr(r+i) ^ kr+i for r = l , 2 , . . . , j - 1. 

Since 5 m = {Umi}, the total number of components in [Xi, Xtl, Xz-2,..., Xij, Xm] = 

Xm - 5 is ^ (ki + 1) + (ki2 + 1) + (k23 + 1) + .. • + {k(j-i)j + 1) + k5, i.e., 

(4) U>((Xm,e) -S)^k1+(j2 *r(r+l)) + kj + j 

By using (3) and (4), we have 

,«,, (tkq) + (m-j) 

u((X™,є)-S) ' , , , # 
ki + ( Z) !Чr+i)ì +kj + j 

V r = l ' 

We claim that 

(tkq)+(m-j) . 
/6ч

 v<г=i ; > jn + (m-j) 

h + (iÿкir+lì)+kj+j^
j + 1)n+j' 

ч r = l ' 
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By using ki $C n, kj ^ n, fcr(r+i) ^ kr -̂  n and kr(r+i) ^ kr+i ^ n for r = 
1,2,... , j — 1, we have 

5 > P ) +(m-j)\[(j + l)n + j]- ki+ ( ~~>r(r+i)J + * i + j 
p=l / J - V = l / 

= í "Ž2kp)ti + 1)- íkd + {"Ž2kr(r+i))j + kjj) \n 

+ (m-j)(j + l)n + (m-j)j+ í ~^kp)j 
^ P = I / 

- \ki(m-j) + ( ^kr{r+\))(rn - 3) + (kj + j)(m - j) + fi 
- \ r = i / 

^ 0 + (m-j)( j + l)n 

- \j2n + (m- 2j)ki + (m- 2j) í " ^ fcr(r+i)) + (m - j)kj) 

ž 0 + (m - j)(j + l)n - (j2 + j(m - 2j) + (m - j))n 

ž 0 + (m - j)(j + l)n - (m - j)(j + l)n = 0. 

[jn + (m- j)] 

Hence, 

(tkP)+(m-j) 
Ч p = l 7 

, J - 1 
> 

fcl + ( £ *V(r+l)J + * i + j 
V r = l 7 

We claim that, for 3 ^ n ^ m + 1, 

jn + (m - j) 
{j + l)n + j ' 

(7) 
jn + m-j ^ p=Ł]n+ [*-*-] 

^ (j + l)n + j " [ - - ± - ] n + [--=-]' 

7*n + m — 7" 
Let /(j) = . We show that f(j) is decreasing for all integers j ^ 0, 

(j + l)n + j 
-•£•> / 0 + 1) > f(j) for all integers j ^ 0. By using n ^ m + 1, we have 

[(j + l)n + m - (j + l)][(j + l)n + j] - [(j + 2)n + (j + l)][jn + m - j] 

= n2 - (m + l)n - m < 0 

for all integers j ^ 0. 
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Since 0 < j < [=-=-], f(j) > [ ^ I j ^ j ^ l j , i.e., the inequality (7) holds, and by 

(5), (6) and (7), we have 

151 > 

We claim that, for n ^ m + 2 

for 3 ^ n ^ m + 1 and m ^ 2. 

(8) 
jn + (m - j) m 

(j + l)n + j ^ n 

hold for all integers j ^ 0. 

Clearly, if j = 0, then (8) is an equality. Since n ^ m + 2, we have 

x 3(n + l) (n + 1 ) 2 - 3 ( n + l) n 2 - n - 2 n2-n 
m ^ n - 2 = (n + l) ; — = ; — ~ T T = : — < 

(n + 1) (n + 1) n + 1 n + 1 ' 

I.Є., 

n2 — n > m(n + 1) or n 2 — n — mn — m > 0. 

Since (jn + (m - j))n — ((j + l)n + j)m = j(n2 - n — mn — m) > 0 for integers 

j > 0, the inequality (8) holds ior all integers j ^ 0. By (5), (6) and (8), we have 

1-51 
u((Xm,є)-S) n 

^ — for n ^ m + 2 and m ^ 2. 

The p r o o f of Theorem 3 goes as follows: 

(i) For n = 1 and m ^ 2, we have X = K(l, 1), and (X m , e) is the following graph: 

vц ^21 ÍI31 V ( m - l ) l Vml 

^12 ^ 2 2 ÎI32 V(m-1)2 Vrn2 

(Xm,e) is a Hamiltonian graph. In [4], a result states that the toughness of a 

Hamiltonian graph is ^ 1. Let S = {i!ii,V22>^3i, • • • ,v m i} if m is odd, and S = 

{vn,V22,...,Vm2} if m is even. Then |S| = u((Xm,e) - S) = | | V ( X m , e ) | , and 

„((A-s) = 1- Hence> KX^.e) = 1. 
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(ii) For n = 2, m even and m ^ 2, we have X = IT(1,2), and (X m ,e) is the 

following graph: 

12 V22 ^32 ^42 

VII V21 W31 V41 

1 > n 

V ( m - 2 ) 2 ^ ( m - l ) 2 ^ m 2 

^ ( m - 2 ) l V(m-l)l Vml 

^ 1 3 ^23 ^33 ^43 ^ ( 7 n - 2 ) 3 ^ ( m - l ) З ÎImЗ 

Since m is even and m ^ 2, (K m , e) has a Hamiltonian cycle: v\2—v22—v32 — ...— 

V(m-2)2-V(m-l)2-Vm2-Vml ~ Vm3 ~ ^ ( m - l ) 3 ~ ^ ( m - l ) l ~ ^ ( m - 2 ) l ~ V ( m - 2 ) 3 ~ • • • U41 ~ 

^43 — ̂ 33 — ^31 — 1I21 — ̂ 23 — 1I13 — *Iii- Thus, by the result in [4], £(Km,e:) ^ 1. Let 

S = {vii,v22,v23,V3i,V42,v43,... ,V(m_1)1,Vm2,Vm3}- Then \S\ =u>((Xm,e) - 5) = 

§ |V (X m , s ) | , and u(lxlffe)_s) = V Hence, *(Km,£) = 1. 

We shall prove (iv) first before we prove (iii). 

(iv) For n ^ 3 and m ̂  2, we have X = If (1, n). By Lemma 3, we have 

t(Xm £) < Pf^ + ffl 
t(X '£K[^]n + [ ^ ] ' 

By Lemma 13, we have, for 3 ̂  n ^ m + 1 and m ̂  2, 

t(xm £) > [*?]n+m 
t(X ' ^ p ± i ] n + [-ir 

Hence, (iv) holds. 

(iii) For n = 2, m = odd and m > 2, we have X = Ii~(l, 2). The note at the end of 
Lemma 3 states that Lemma 3 also holds for n = 2, m being odd and m > 2. Thus 
Lemmas 5, 7, 9, 11 and 13 also hold for this case, and 

rm—1 ] Q _|_ rm-j-2 

t(Xm,e)=\ i , + \ 
V ' / m-)-ll() i \rn — l 

where m is odd and m > 2, 

I.Є., 

t(Xm,є) 

[f]H[Vl 

( 2 ^ ) 2 + (2i±i) _ 2m - 2 + m + 1 _ Зm - 1 

( - - ± - ) 2 + - - = - ~ ~ ' 2m + 2 + m - 1 3m + 1 

(v) Let 5 = {fn,U2i, • • • ,i!"mi} be a disconnecting set in (N m , e ) . Then \S\ = m, 
and u{{Xrn,s) - 5) = n, i.e., for each j = 2, 3 , . . . , n + 1, the chain v\j - v2j — v3j -
. . . - Vmj is a component in the induced graph (X m , e) - 5, and there are n of them. 

Thus, 
\S\ m 

t(Xm,є)^ 
Ą(Xm,є)-S) n 
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By Lemma 13, for n ^ m + 2 and m ^ 2, we have t(Xrn,e) ^ ^ . Hence, 

m 
t(Xm,e) = — for n ^ m + 2 and m ^ 2. 

n 

(vi) Let n ^ 1, m ^ 2 and X = i f ( l ,n ) . We want to show that 

t(Xm,(U)) = - -£—-. 
(n — 1) + m 

Case 1. n = 1 and m ^ 2. With X = If(l, 1), (Xm , (12)) and (Xm,e) are clearly 
isomorphic. Thus, *(Xm,(12)) = t(Xm,e) = 1 = ( 1 _ m

+ m , and *(Xm,(12)) = 
holds for n = 1 and m ^ 2, (n-l)+m 

Case 2. n ^ 2 and m ^ 2. Let 5 G F(Xm, (12)). Then by Lemma 4, we know 
that 

151 m 
^ •: : < 1 -c . j ( (Xm , (12))-5) ^ ( n - l ) + m 

We claim that there exists a 5 ' G F(Xm, (12)) such that 

^i = {*I;i} for i = 1,2,.. . ,m. 

Let 5 G F(Xm,(12)) such that S{ ?- {vti} for some z. By Lemma 8, 10, 12, 
1 < i < m, va £ Si, i>(;_i)i G 5,_i, and V(*+i)i G 5 t+i. Since 5; 7-= cp, there exists a 
vertex Vij G 5; such that j = min{£ ^ 2; v^ G 5;}. Let 5Z- = (5t- \ {i>ij}) U {va} and 
5 ' = 5 iU5 2 U. . .U5 t _ iU5^U. . .U5 m . Then {vi2} is a component of (Xm , (12)) - S'. 

Thus, 

uj((Xm, (12)) - 5') > u((Xm, (12)) - 5) 

i.e., 5 ' G F(Xm, (12)). By Lemma 8, 5< = {va} 

Repeatedly using the above method on 1 < i < m, we have that 5 ' G F(Xm, (12)) 
such that S'{ = {va} for i = 1, 2 , 3 , . . . , m. 

Hence, by Lemma 2, 

m 
t(Xm, (12)) = for n ^ 2 and m ^ 2. 

(n — 1) + m 

• 
The authors wish to thank Jingming Guo and Bin Li for pointing out a gap in the 

proof of Theorem 3. 
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