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Abstract. We use an algebraic method to classify the generalized permutation star-graphs,
and we use the classification to determine the toughness of all generalized permutation star-
graphs.

1. INTRODUCTION

The graphs which we consider here are finite, undirected, loopless and simple. Let
X = (Wi, Ey) be a graph where the vertex-set Vi = Vi (X) = {v11,v12...,v1} and
E; = E(X) is its edge-set, and o be a permutation on V;. A permutation X-graph
(X,0) is a graph with 2n vertices, V(X,0) = V; U V2 where V; = {vi1,via,...Vin}
fori = 1,2 and V1 NVa, = ¢, and E(X,0) = E; U E; U Ey; where E; = E(X),
E; = {[vat, vas]; [vie,v1s] € Er} and Eyg = {[vie, vas]; 0(v1e) = vis}-

Example 1. Let C5 be a 5-cycle with V(C5) = {v11, v12,v13,v14,v15} and

V1 V2 U3 Vs Us
o= .
Vi Vg V3 Vs Vs
For simplicity, we shall write o as (1)(2453). Permutation Cs-graph (Cs, o) is the

Petersen graph.

Permutation graphs were first considered by Chartrand and Harary in [3]. Dorfler,
in [5] and [6], obtained some interesting results on automorphisms and isomorphisms
of permutation graphs. Here, we shall consider a generalization of permutation
graphs. )

Let m be an integer > 2. X = (V4, E;1) and o be a permutation on V;. A gen-
eralized permutation X ™—graph, denoted by (X™, o), is a graph with mn vertices,
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V(X™,0)=ViUVoU...UV,, where V; = {vi1,via,...,0;n} fori =1,2,...,m, and
VinV; = pfori # j,and E(X™,0) = (E1UE,U. . .UE,,)U(E) 2UFE3 3U...UE_1 m)
where By = E(X), E; = {[vit, vis]; [vit,v15] € E1} fori =2,3,...,m, and Ejij+1) =
{[vjt,v(j+1)s); T(v1:) = vis} where 1 = o for j an odd integer and 1 < j < m — 1,
and 7 = o~! (the inverse of o) for j an even integer and 1 < j < m — 1.

Example 2. Let X be the following graph with 3 vertices:

U1 V12 V13

and ¢ = (123). The permutation graph (X2, o) is the following graph with 6 vertices:

V11 V12 V13
V21 V22 V23

The generalized permutation graph (X3, ) is the following graph with 9 vertices:

V11 V12 V13
V21 23
U31 V32 V33

where 0~ = (132) is used. The adjacency matrix A = A(X) of X with the ordering
v11,V12, V13 and the permutation matrix P, corresponding to o are respectively:

010 010
1 01 and 0 0 1
010 1 00

We order the vertices of (X2,0) as vy1,v12,v13,V21,v22,v23. Then the adjacency
matrix A(X?,0) is the following 6 x 6 matrix consisting of four 3 x 3 block matrices

Al Po’
Pt A

where A; = A; = A and P!(= P;!) is the transpose of P,. We also order the
vertices of (X3,0) as vi1,v12, V13, V21, V22, V23, U31, V32, U33. Then the adjacency ma-
trix A(X3,0) is the following 9 X 9 matrix consisting of seven 3 x 3 nonzero block
matrices and two 3 x 3 zero block matrices

A P,
Pt A, P
P, As
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where A} = Ay = A3 = A,P:(= P; 1} is the transpose of P, and each of the blank
entries is a 3 x 3 block matrix with all entries being zero.

Here our purposes are:

1. Use an algebraic method to obtain some results on the isomorphisms and
automorphisms of generalized permutation graphs. Some of our results are general-
izations of those in [5] and [6]. Our algebraic method depends on the Lemma A, on
p. 480 in [1] which states: Let X and Y be graphs, o be a one-to-one map of V(X)
onto V(Y), and P, be the permutation matrix corresponding to ¢. Then ¢ is an
isomorphism of X onto Y if and only if

(1) A(X)P, = P,A(Y).

On p. 489 in [1], Corollary A.1 states: Let X be a graph, o be a permutation of V(X),
and P, be the permutation matrix corresponding to o. Then ¢ is an automorphism
of X if and only if

) A(X)P, = P, A(X).

2. We shall use our results on isomorphisms and automorphisms to classify gener-
alized permutation star-graphs. . . star-graph with n+1 vertices, n > 1, is a complete
bipartite graph K (1,n) with n+ 1 vertices having one vertex of degree n and each of
the other n vertices of degree 1. In the Example 2 above, X is a star-graph K(1,2).

3. We shall use our classification to determine the toughness of all generalized
permutation star-graphs, i.e., to determine the toughness of ((K(1,n))™, o) for every
positive integer n, every integer m > 2 and every permutation ¢ in the symmetric
group Sp+1 on n + 1 vertices. The toughnesss of a graph X,¢(X), is defined as

t(X) = min{;}-(yls_l—s)}

where the minimum is taken over all disconnecting sets S of V' (X), |S| is the cardi-
nality of S, and w(X — S) is the number of components of the induced graph X — S.
(See [4].)
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2. ISOMORPHISMS, AUTOMORPHISMS AND CLASSIFICATION

Lemma 1. Let m be an integer > 2, X be a graph with n vertices, G(X) be
its group of automophisms, ¢ and p be permutations on V(X), and (X™,0) and
(X™, n) be generalized permutation graphs. If there exists an a in G(X) such that

1

a~loa = pu, then (X™,0) and (X™, ) are isomorphic.

Proof. Leta' = (a,a,...,a) be a map from V(X™,0) =ViUVoU...UV,
to V(X™, o) defined by o/ (V1) = a(V1) and o' (vj¢) = vjs if and only if a(vis) = vis
fort=1,2,...,n,and j = 2,3,...,m. Then @' is a permutation of V(X™,c). We
order the vertices in V(X ™, o) lexicographically, i.e., in the following order:

V11,V12, -+, V1n,V21,V22, .- -, V205 - -, Um1, Um2, - - -y Umn-

Thus, the corresponding permutation matrix is

Py

P,
P, = . = (diag.(Pa) Pas- - -5 Pa))

Py

where P, is the permutation matrix corresponding to «, and the adjacency matrix
of (X™,0) is

Al Pa'
P, Ay P}
Pa AS
A(X™ 0) =
Am—l P;h t
PFt A,
where A; = A, = A3 = ... = A,, = A, P, is the permutation matrix corresponding
to o and P¥t = P! if m is an odd integer, and P! = P;* = P, if m is an even

integer.
Since a € G(X), by using (2), a~'oa = p, and the isomorphism of the symmetric
group S, on n vertices and the group of n X n permutation matrices, we have

PIYA(X™, 0)Py = (diag. (P7Y,PCY,..., P7Y)A(X™, 0)(diag. (Pa, Pay- .., Pa))
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P;'AP, P;'P,P,
P;'PiP, P;'A,P, P;'PiP,

P7'A,_ 1Py PI'P:tP,
P;PFtP, P[l4,P,

A, P,
P. A, P!
= = A(X™, ).
R
PF' A,
By using (1), (X™,0) and (X™, u) are isomorphic. O

e e,
Corollary 1.1. Let a € G(X). Then ¢’ = (¢, q,...,a) belongs to the group of
autormorphisms, G(X™, o), of (X™,0) if and only if ca = ao.

Proof. If ca = ao, then by Lemma 1 and (2), o' € G(X™, o). Conversely, if
o € G(X™,0), then, by (2), we have

A(X™,0) = (diag(P; 1, P7Y,..., P7Y)A(X™, 0)(diag(Pa, Pas - - -, Pa)),

ie.,
A, P,
P, Ay, P}
Am_1 Pt
PFt A,
A, PIPP,
P;'PtP, A,  PIP,P,
Am—l P(;IP;*: tPa
P{IPE'P, A
Thus, P, = PP, P, and ac = oa. O

Remark. In our Corollary 1.1, if X and o are given, how do we find a € G(X)
such that o' = (a,a) € G(X,0), i.e.,, which a in G(X) such that ac = ca? The
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answer is that we have to find the centralizer ring, R((c)), of the cyclic group, (o),
generated by o. Then take the intersection of G(X) and R({(c)). In general, there
are not “many” such permutations a, although the intersection is not empty. In
[1] and [2], there is an algorithm to find R(H) for any given permutation group H.
R(H) is also a finite dimensional vector space over a field. The algorithm is to find a
basis for the vector space. For instance, consider the Petersen graph (X, (1)(2453))
where X is the 5-cycle with V(X) = {1,2,3,4,5}. Then G(X) is the dihedral group
generated by (12345) and (1)(25)(34), and R({(1)(2453))) is

a;; a2 a2 Q12 Q2
a2y Qa2 a3 Qs Qazs
a1 asp Gz Gz ag |;ai; €{0,1}
a21 Q23 QGz2s5 Q22 a3z2
a1 Q25 Qg2 Qa23 (22

Consequently, G(X) N R({(1)(2453))) consists of the identity and (1)(25)(34) per-
mutations. We know that the group of automorphisms of the Petersen graph is
isomorphic to Ss on 10 points. (See [7]).

Lemma 2. Let X be a graph with n vertices, G(X) be the group of automor-
phisms of X, and S,, be the symmetric group on n vertices.

(a) If o and p are in the same right coset of G(X) in S,, then the generalized
permutation graphs (X™, o) and (X™, u) are isomorphic for any integer m > 2.

(b) If ¢ and p are in the same left coset of G(X) in S,, then the generalized
permutation graphs (X™, o) and (X™, u) are isomorphic for any integer m > 2.

Proof. (a) Since o and u belong to the same right coset of G(X) in Sy, there
exists a B € G(X) such that ¢ = Bu. Let € be the identity permutation on G(X),
and

5 (B,¢e,B8,¢e,...,B,¢), if m is even,
1 (B,e,B,¢,...,8),  ifmisodd,

be a map from V(X™,0) = VUV U... UV, to V(X™,0) defined by g'(V1) =
B(V1),B'(vjt) = e(vjt) = vje for t = 1,2,...,n and j being even and 2 < j < m,
and B'(vit) = vis if and only if B(vi¢) = v1s for ¢ = 1,2,...,n and j being odd and
2 < j < m. Then ' is a permutation of V(X™,0). Let P. = I,, be the n xn identity
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matrix. Since o = ,BM,PEIP, = P,, and

P;'A(X™,0)Pg
= (diag(Py ', In, P51, I, .. ) A(X™, 0)(diag(Pg, In, Pg, I, . - -))

P;'A41P; F;'P, A P,
| PP 42 1’1ng R B R A
= P;'P, Pyj'AsPs Pi'P, | = P, A3 P,
= A(X™, n)

where (2) is used. By (1), (X™,0) and (X™, 1) are isomorphic.
(b) Similar to (a), there exists a v € G(X) such that ¢ = py. Let

o = (&%, 8, %5 -+, &Y)s if m is even,
(577a€77a---,7,5), if m is Odd,

be a map from V(X™,0) = ViUV, U...UVy, to V(X™,0) defined by 4'(vj¢) =
e(vj¢) = vje for t = 1,2,...,n and j being odd and 1 < j < m, and 7' (vit) = vss if
and only if y(v;;) = v;s for t = 1,2,...,n, and i being even and 1 < i < m. Then 4/
and (y')~! are permutations of V(X™,0). Since ¢ = v, P,P;! = P,, and, similar
to (a), we have

(P TA(X™, )P = AX™, ).

By (1), (X™,0) and (X™, u) are isomorphic.
For m = 2, our Lemma 2 is the same as Theorem 9 and Theorem 9’ in [5]. 0O

Theorem 1. Let m be an integer > 2, X be a graph with n vertices, G(X) be its
group of automorphisms, S, be the symmetric group on n vertices, and N(X™) be
the number of nonisomorphic classes of generalized permutation X ™—graphs. Then

|Sn]
IGX)I

LS NX™) <

i.e., N(X™) is bounded by the index of G(X) in S, for any integer m > 2.
The proof follows from Lemma 2. O

We note that if X is the complete graph or the null graph N, then G(X) is S,
and N(X™) =1 for any integer m > 2, i.e.,, (X™,0) = (X™,¢) for any o € S, and
any integer m > 2.
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Theorem 2. The number of nonisomorphic classes of generalized permutation
star-graphs with n + 1 vertices is 2 for each integer n > 2, i.e., N((K(1,n))™) = 2
for each integer n > 2 and for each integer m > 2.

(We note that N((K(1,1))™) = N((K2)™) = 1 for any integer m > 2.)

Proof. Forn > 2, let X = K(1,n) be a star-graph with V(K (1,n)) =
{v11,v12,.-.,01 nt+1} where the degree of v1; is n, and the degree of vy; is 1 for
1=2,3,...,n+ 1. Clearly, G(K(1,n)) is {¢ € Sn+1; 0(v11) = v11} of order n!, and
it is,isomorphic to S,. The number of right cosets of G(K(1,n)) in Sp41 is n + 1.

We claim that these n + 1 right cosets of G(K(1,n)) in S,+1 can be represented
as

G(K(1,n)),G(K(1,n))(12),G(K(1,n))(13),...,G(K(1,n))(1(n + 1)),

i.e., they are pairwise disjoint, and S,4+; = G(K(1,n)) nGI(G(K(l,n))(li)). Suppose
that for i # j, 0 € G(K(1,n))(1) N G(K(l,n))(lj)l. 2Then there exist @ and
in G(K(1,n)) such that ¢ = a(li) and ¢ = B(1j). If a(i) = k and B(j) = gq,
then ¢ = (1ik...) and 0 = (1jqg...). Since 7 # j, this is a contradiction, and
G(K(1,n))(1))nG(K(1,n))(1j) =@ fori,j =2,3,...,n+1, and ¢ # j. Since each
coset contains n! permutations in S,41,

n+1
Sni1 = G(K(1,n) U (G(K(1,n)(10)).

=2

It follows from Lemma 2 (a) that for any two permutations o, 07 in the same right
coset, the generalized permutation graphs ((K(1,n))™,0;1) and ((K(1,n))™,02) are
isomorphic.

We claim that for any permutation (1¢), ¢ = 3,4,...,n + 1, the generalized per-
mutation star-graphs ((K(1,n))™, (1)) and ((K'(1,n))™, (12)) are isomorphic. Since
(23...(n+1)) € G(X) and

((23...(n+1)"H71(12)(23... (n + 1))"2 = (19),

by Lemma 1, ((K(1,n))™,(1¢)) and ((K(1,n))™,(12)) are isomorphic for i =
3,4,...,n+ 1.

We show that for the permutation (12) and the identity permutation € in Sp41,
the generalized permutation star-graphs ((K(1,n))™,¢) and ((K(1,n))™,(12)) are
not isomorphic.

Every cycle in ((K(1,n))™,¢) is of even length. But in ((K(1,n))™,(12)), the
cycle v1; — vag — V21 — V23 — vi3 — v11 is of length 5. Thus, ((K(1,n))™,€) and
((K(1,n)™, (12)) are not isomorphic, and the number of nonisomorphic classes of
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generalized permutation star-graphs with n + 1 vertices is 2 for each integer n > 2
and for each integer m > 2. O

3. THE TOUGHNESS

We shall determine the toughness of((K(1,n))™,0) for every positive integer n,
every integer m > 2 and every permutation o in the symmetric group S,+; on
n + 1 vertices. By using our classification, we only need to consider the toughness
of ((K(1,n))™,¢e) and the toughness of ((K(1,n))™, (12)) for every positive integer
n and every integer m > 2.

Theorem 3. Let m and n be integers such that m > 2 andn > 1, X = K(1,n)
be a star-graph with n + 1 vertices, and (X™, o) be a generalized permutation star-
graph. Then

(1, n=1andm > 2, (i)
1, n=2,m even and m > 2, (i)
3m -1
o n =2, m odd and m > 2, (iii)
m I3m+1
t(X™ €)= s mi2
w, 3<n<m+1andm > 2, (iv)
(25 ]n + (25
m
—, n2m+2andm 22, (v)
\ n

where [4] is the largest integer < ¥, and

t(X™,(12)) = ﬁ, n>1andm > 2. (vi)

In order to prove Theorem 3, we need the following lemmas.

Lemma 3.

(25 )0+ [252)

RN ey =y

<1 forn>3andm > 2.
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Proof. LetS=S;US;U...US,, be the disconnecting set of (X™,¢) with

S; = {vi1} for i being odd and 1 < i < m — 2,
Sk ={vkj; j=2,3,...,n+1} for k being even and 1 < k < m — 2,
Sy = { {vm-11} if m is even, and
{vm-1);:3=2,3,...,n+1}, ifmis odd,

and
Sm = {'Uml }

If m is even, then the components of the induced graph (X™,e) — S are: {v;;} for
i=23,...,n+1,{var},{vs;} for j = 2,3,...,n+ 1,{va1}, ... {[vem—-1)j>vmj]} for
j=2,3,...,n+1.

If m is odd, then the components of the induced graph (X™,e) — S are: {v;;} for
3=2,3,...,n+1,{va},{vs;} for j =2,3,...,n+1,{var},..., {¥m-1)1}, {Um;} for
j=2,3,...,n+1.

Thus, we have |S| = [Z71]n + [2£2],w((X™,€) — S) = [=]n + [25L], and

|S| _ [+ (22
w((Xm,e) - S)  [Zfn+ (25

t(X™e) < forn >3 and m > 2.

S
We claim that —¢— < 1. If m is even and n > 3, then
W((Xm,E)—S)
m=2 m+2 -9
HX™ ) < |S| =( > )n+(_22 )=nm n+m+2<1'
w((Xm™,e) - S) (B)n+ (252) nm+m — 2
If m is odd, then
S molyp 4 (i -n+m+1
w(Xm™e)—=S) (B )n+ (") nm+n+m-—1
We note that Lemma 3 also holds for n = 2, m odd and m > 2. O
Lemma 4.
t(X™,(12)) < " < forn >2andm 2 2.
(n=1)4+m
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Proof. Let S =S5;US2,U...US,, be the disconnecting set with S; = {v;1}
fori = 1,2,...,m. Then the components of the induced graph (X™, (12)) — S are
{vig} for i = 1,2,...,m and the chains

V15 — V25 — ... — Umj, forj=3,4,...,n+1.
Thus, |S| = m, and w((X™, (12)) = S) = (n — 1) + m, and

& _
W(X™(12)-8)  (n-D+m

t(X™,(12)) < <1 forn>2andm>2.

0

Let F(X™,0) = {S C V(X™,0); A5l = t(X™ o)}, and S = (} S; where
(X™,0) = {S CV(X™,0); srrigy—gy = HX™,0)} Y]
S,’=SﬂV(X,')fOl‘i=1,2,...,m.

Lemma 5. IfS € F(X™,e¢), then S; #¢ fori=1,2,... ,m.

Proof. Casel. Si=¢and Siy1 #,1 <i<m-1.

Case 1.1. v(;41)1 ¢ Siy1. We claim that none of v(;y1); € Sip1 forj =2,3,...,n+
1. Suppose the contrary, i.e., v(it1); € Sit1 for some j € {2,3,...,n + 1}. Let
Szt+l = Sin1 \ {U(i+1)j}7 and ' = S, U...US;U S£+1 USit2U...U Sm. Then .
|S’| = | S| — 1. If there is a comnenent C of the induced graph (X™,e) — S such that
vi+2); € C and v;; ¢ C where 1 + 2 < m, then we have

w((X™e)-8)=w(X™e) -S)-1.

(The case of i + 2 > m belongs to the case of having no such component.)
If there is no such component C, then

w((X™e)=8) =w(X™e)=S) >w({(X™e)-S)-1.
Thus, in any case, we have

S1 st s
X =8) S (X =9 -1 w((X™e)=9)

where Lemma 3 is used, i.e., t(X™,¢) = W% < 1 is used. That is a contra-
diction to S € F(X™,¢).

Case 1.2. v(i41)1 € Siy1.. We claim that none of v(;yy); € Sit1 for j =2,3,...,
n+ 1. Suppose the contrary, i.e., v(iy1); € Si41 for some j € {2,3,...,n+1}. By
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using the same reasoning as in the Case 1.1, we have a contradiction. Consequently,
Si+1 = {'U(H—l)l}- Let ;fH = Si+1 \ {U(i-f-l)l} and S" = S;U.. .USiUS£'+1 US{+2 .U
Sm. Then w((X™,e) = S") > w((X™,e) = S) — 1, and

5" < S| -1 < S|
w((Xm,e) —8") w((Xme)—S) -1  w(Xm,e)=8)

That is a contradiction to S € F(X™,¢).

By the Case 1.1 and the Case 1.2, we know that S;;; = ¢, i.e., the case S; = ¢
and Siy1 # ¢, 1 <1< m —1, does not exist.

Case 2. S;=pand S;—; #pfor2<i<m.

Case 2.1. v(;_1); ¢ Si-1. Similar to the proof of the Case 1.1, we know that none
of v(j_1); € Si—y for j =2,3,...,n+ 1.

Case 2.2. v(;_1); € Si—1. Similar to the proof of the Case 1.2, we know that it is
impossible, i.e., S;_; = .

By the Case 2.1 and the Case 2.2, we know that S;_; = ¢, i.e., the case S; = ¢
and S;_;1 # ¢ for 2 < i < m does not exist.

Since (X™,¢) is connected and S € F(X™,¢),S # ¢. Say Sk # ¢ for some k such
that 1 < k < m. Repeatedly using the Case 1, we have Sx_; # ¢, Sk—2 # ¢, ...,
S1 # . Repeatedly using the Case 2, we have Si41 # ©,Sk+2 # @y, Sm # ©.
Hence, if S € F(X™,¢), then S; #p fori =1,2,...,m. O

Lemma 6. IfS e F(X™,(12)), then S; # ¢ fori=1,2,...,m.

Proof. Casel. S;=¢pand S;41 #p, 1 <i<m—1.

Case 1.1. v(iy1)1 € Si+1. The proof for the case that none of v(i;1); € Sit1
for j = 3,4,...,n 4+ 1 is the same as the Case 1.1 in Lemma 5. We claim that
V(it1)2 ¢ Sit1. Suppose the contrary, i.e., v(it1)2 € Sit1. Let Siyy = Sip1\{v(41)2},
and ' =S5 U...US;US;; USiy2U...USy,. Then |S'| = |S| - 1. If there is a
component C of the induced graph (X™,(12)) — S such that v(;y); € C and v;; ¢ C
where i + 2 < m (The case of i + 1 > m belongs to the case of having no such
component.), then we have

w((X™,(12)) - §') =w((X™,(12)) = §) - 1.
If there is no such component C, then
w((X™,(12)) = §) = w((X™,(12)) = ) > w((X™,(12)) = §) - 1.
Thus, in any case, we have

15| < S| -1 < |51
w(X™,(12)) = ) ~ w((X™,(12)) =) -1 " w((X™,(12)) = 5)
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where Lemma 4 is used, i.e., t¢(X™,(12)) = WTJ%W?? < 1is used. That is a
contradiction to S € F(X™, (12)).

Case 1.2. v(;4+1)1 € Si+1. By using the same reasoning as in the Case 1.1, we know
that none of v(;y1); € Siy1 for j =2,3,...,n+1. Thus, S;y; = {v(i41)1}- Using the
same reasoning as the Case 1.2 in Lemma 5, we have S;;; = ¢. By the Case 1.1 and
the Case 1.2, we know S;11 = ¢, i.e.,, thecase S; =pand S;41 #pforl <i<m—1
does not exist.

Case2. S;=¢and S;_1 #pfor2<i<m.

Case 2.1. v(;_1); ¢ Si—1. Similar to the proof of the Case 1.1, we know that none
of v(;_1); € Si—y fori =2,3,...,n+1.

Case 2.2. v(;—1)1 € S;—1. Similar to the proof of the Case 1.2, we know that it is
impossible, i.e., S;—1 = .

By the Case 2.1 and the Case 2.2, we know that S;_; = ¢, i.e., the case S; = ¢
and S;_; # ¢ for 2 < i < m does not exist.

Similar to Lemma 5, repeatedly using the Case 1 and the Case 2, we have S; # ¢
fori=1,2,...,m. O

Lemma 7. Let X € F(X™,¢e). Ifvyy € S;, fori=1,2,...,m, then v;; ¢ S; for
j=2,3,...,n+1.

Proof. Suppose the contrary, i.e, v;; € S; for some j such that 2 < j <n+1.
Then let S; = S; \ {v;;} and S’ = S;U...US;_1 US!US;41U...US,,. Thus,
|S’| = | S| — 1. If there is a component C of the induced graph (X™,e) — S such that
one of v(;_1); and v(;41); belongs to C and the other does not (The case of i = 1 or
i = m belongs to the case of having no such component.), then

w((X™e)=S)=w((X™e)-S) -1
If there is no such component C, then
w((X™,e) =8 =w(X™,e)—8S) >w(X™e)—S)-1.

Thus, in any case, we have

15| < |S] -1 < IS
w((X™,€) = 8) = w(X™e)=S) -1 ~ w((X™,e) - S)
S
where the Lemma 3 is used, i.e., t(X™,¢) = ——# < 1is used. That is a
w((vas) - S)
contradiction to S € F(X™,¢). O

443




Lemma 8. Let S € F(X™,(12)).
(a) Ifvyy € S;, fori=1,2,3,...,m, thenv;; ¢ S; forj =3,4,...,n+ 1.
(b) Ifviy € S;, thenvia ¢ S; fori=1,2,...,m.

Proof. (a) We replace 2 < j < m, (X™,¢), and Lemma 3 in the proof of

Lemma 7 by 2 < j < m, (X™, (12)), and Lemma 4 respectively.
(b) We replace v;5, 2 < j <m, (X™,€),v(i-1)j, V(i+1)j, and Lemma 3 in the proof
of the Lemma 5 by viz, j = 2, (X™, (12)), ¥(;-1)1, Y(i+1)1 and Lemma 4 respectively.
O

Lemma 9. Let S € F(X™,¢e). Then vy, € S; and v,y € Sp.

Proof. Suppose that v;; ¢ S;. By Lemma 5, S; # ¢. If v1; € S; for some j
such that 2 < j < n+ 1, then let S{ = S;/{v1;} and S’ = S]US;U...US,,. Thus,
|S'| = |S| — 1. If there is a component C of the induced graph (X™, &) — S which
contains only one of v;; and vy;, then

w((X™e)-8") =w(X™e) - S)—-1.
If there is no such a component C, then
w((X™e)-85") =w(X™,e)=S) >w(X™e)—S) - 1.
Thus, w((x,l,il)_s,) < w((x,',fL;iS)_l < w((x'l':S:L)_S) where Lemma 1 is used, i.e.,

t(X™,e) = WX'I'% < 1 is used. That is a contradiction to S € F(X™,¢), and
v11 € S1. Similarly, v, € Sp. O

N

Lemma 10. Let S € F(X™,(12)). Then vi; € S1 and vym1 € Sp.

Proof. Suppose that v;; ¢ S;. By Lemma 6, S; # ¢. If v1; € S; for some j
such that 2 < j < n+1, then let S] = S1/{v1;} and S = S{U S, U...USy,. thus,
|S'| = |S| — 1. If there is a component C of the induced graph (X™, (12)) — .S which
contains only one of v;; and vy; for 2 < j < n 4+ 1 or contains only one of v;; and
U2, then

w((X™,(12)) - §') = w((X™, (12)) = §) — 1.

If there is no such a component C, then

w((X™,(12)) = 8') = w(X™,(12)) = S) > w((X™,(12)) = S) - 1.
Thus 5] < 1511 < 151 where Lemma 4 is used
? w((X™,(12))=S5") T w((X™,(12))-S)-1 w((X™,(12))=S) ’
ie, t(X™, (12)) = w((X’",.(sl2))—S < 1 is used. That is a contradiction to S €
F(Xm, (12)) and v1; € S;. Similarly, Uml € Sm. a
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Lemma 11. There does not exist any S in F(X™, €) with the property that
vi1 ¢ S; and v(i11); € Si+1 wherel <i<m— 1.

Proof. Suppose the contrary, i.e., there existed a S € F(X™,¢e) with the
property that v;; ¢ S; and v(;41)1 ¢ Sit1 where 2 < i < m — 1. Since S; # ¢ by
Lemma 5, there would be a v;; € S; for some j such that 2 < j <n+1.

Let S = S;\{v;;} and S’ = S;U...US;_1US]US;11U...USy,. Then |S'| = |S|-1.
If v(i41); is in the induced graph (X™,e) — S, then v(i41);,V(i+1)1 and v are in the
same component, since v;; ¢ S; and v(;11); ¢ Si41. If there is a component C in the
induced graph (X™,¢) — S which contains only one of v(;_;); and v;;, then

W((X™ ) = §') = w((X™,€) — §) — 1.

(The case of i = 2 belongs to the following case.) If there is no such a component C,
then

w((X™,e) = §') =w((X™,e) = ) > w((X™e) - 5) - 1.

Thus,
S| < S| -1 5] <1
w(X™e)=8) ~ w((X™e)=8) -1 w((X™e)-S)
where Lemma 3 is used, i.e., t¢(X™,¢) = L < 1 is used. That is a
w((X'",s) - S)

contradiction to S € F(X™,e). Hence with v;; € S; (Lemma 7), there does not
exist any S € F(X™,e) with the property that vy € S; and v(iy1)1 ¢ Siy1 where
1<i<m-1. O

Lemma 12. There does not exist any S in F(X™,(12)) with the the property
that vi1 ¢ S; and v(iy1); ¢ Sit1 wherel1 <i<m — 1.

Proof. Suppose the contrary, i.e., there existed a S € F(X™,(12)) with the
property that v;; ¢ S; and v(;41); ¢ Siy1 where 2 < i < m — 1. Since S; # ¢ by
Lemma 6, there would be a v;; € S; for some j such that 2 < j < n + 1. There are
two cases:

Case 1. j = 2, i.e, v;2 € S;. We may assume that i is the smallest positive
integer with the proprety vi1 ¢ S; and v(i41); ¢ Siy1. Since by Lemma 10, v;; € S;
and vm1 € Sm, we have 1 < ¢ < m. That means that for 1 < i < m, there
are S;—1,S5:,5i+1 in S such that Yii-1)1 € Si—1,vi1 € S; and Y(i+1)1 ¢ Sit1. Let
Si=58i\{vie} and ' =5, U...US;_1US!US;41U...US,,. Then |S'| =|S| - 1.
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If there is a component C in the induced graph (X™,(12)) — S which contains
only one of the vertices v;; and V(i+1)1, then

w((X™,(12)) = §') =w((X™, (12)) - §) - 1.
If there is no such component C, then
w((X™, (12)) = §) = w((X™, (12)) = §) > w((X™, (12)) - §) - 1.
Thus,

R - 1

(X (12)-5) S (X 12) - 8) -1 (X (12) - 8)

IS
w((X™,(12)) = )
contradiction to S € F((X™, (12)) with the property that v;; ¢ S; and v(;41)1 ¢ Sit1
forl<i<m-—1.

Case 2. j > 2, i.e, v;; € S; for some j such that 2 < j < n + 1. The proof is
similar to the one in Lemma 11. O

where Lemma 4 is used, i.e., t¢(X™, (12)) = < lisused. Thatis a

Lemma 13. Let S € F(X™,¢) and [%] be the largest integer < % Then

El [ n + [2F2]
w(Xm,e)=8) 7 [2]n + (2571

for3$n<m+1andm>2,andml,%)_—s)>%forn>m+2andm22.

Proof. By Lemma 5, we know that S; # ¢ for i = 1,2,...,m. By Lemma 9,
vy € S; and vy € Sn. By Lemma 7, S; = {vi1} and S,, = {vm1}. Thus,
let S;,,Si,,...,S;; be the ones with v;,; ¢ S;, for p = 1,2,...,j,and 1 < 41 <
i3 < ...<1i; <m,and |S; | =k, forp=1,2,...,j. Then we have

3) 151 = (; 5,1) +(m - 5) = (sz k) +(m = 5).

By Lemma 11, we know that (i, + 1) < ipyy for p=1,2,...,j — 1. Consider the
induced graph from X; to X;,, denoted by [X1, X;,], of X;UX,U.. . UX;, 1UKX;, . If
V(iy)g € Si for2< g <n+1, then the chain vyg —v2q — ... —v(i; —1)q IS @ component
in [Xl, Xi1 ,].
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If vii)r ¢ S, for 2 < r < n+ 1, then the chain vi, — var — ... — v(,), is in the
component which contains v(;,); in the induced graph [X1, Xi,]- Hence, the number
of components in [X;, X;,]is [Si;,| +1 = k1 + 1.

Consider the induced graph from X, to X;,, [X1, X:,, Xs,], of X1UXoU.. .UX; U
Xiyr1U...UX,. Ifvg) €S, and v, € Si, for 2 < ¢ < n + 1, then the chain
V(i +1)g — Y(i142)q — - - - — Y(ip—1)q 1S & component in [X1,Xs,, Xi,]. Let k12 be the
number of such components in [Xi, X;,, Xi,]. If vi,) € Siy, and v(,), € Si, for
2 < ¢ < n+1, then the chain v(;;)q = V(i; +1)q - - - — U(ip—1)q 18 in the component which
contains v(;y1. If vg,)e € Si; and v(,), ¢ Si, for 2 < ¢ < n + 1, then the chain
V(i1 +1)q — V(i1 +2)g — - - - —V(iz)q 1S in the component which contains v(;,)1- If v(;,), ¢ S,
and v(;,)q € Si, for 2 < ¢ < n+1, then the chain v(;,)g — V(i 41)q — - - - —V(iy)q 18 in the
component which contains v(;,); and v;,);. Thus, the total number of components
in [X1, Xi,, Xi,] is < (k1 +1) + (k12 + 1). Similarly, the total number of components
in [ X1, Xi,, Xey, Xig), is < (k1 + 1) + (k12 + 1) + (k23 + 1) .... The total number of
components in [X1, X;, Xi,,..., Xi;] is < (b + 1) + (k12 + 1) + (ke + 1)+ ...+
(k(j—1); +1). Clearly, ky(rq1) < kr and ky(ry1) < krgq forr = 1,2,...,5 - 1.
Since Sy, = {vm1}, the total number of components in [X;, X, Xi,,..., Xi;, Xm] =

—Sis < (k1 4+ 1)+ (ka2 + 1) + (kaz + 1) + ... + (kGj—1); + 1) + k;j, e,

j—1

(4) w((X™,e) = S) <k + (Z kr(r11) ) + ki +j.
r=1
By using (3) and (4), we have

()

>

Xme)-S)~ i1 '

“( €)= 5) kv + ( > kr(r+1)> +kj+
r=1

We claim that

(Sk) =i e

©) e EY A

ki + (jil kr(r+1)) +kj+3

r=1
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By using k1 < n, kj < n, kry(rg1) < ke < noand Krpyq) < kpgr < nforr =
1,2,...,j7 — 1, we have

j—1

[(Z by) + =) |G+ D+ 31 = [k (ko) + 85+ m + (= )

p=1 r=1

=)+ Do+ (n =)+ (L )3

p=1

(Zk) G+1)- (klj ¥ (jz_fkr(m))j ¥ kjj)]n

p=1 r=1

j—1

- [ntm =)+ (ks ) =)+ G+ = ) + 57

r=1

20+ (m—j)G+1n

= (0 + (= 200k + (- 2j>(j§ ey ) + (= )k

r=1
+(m =)+ n— (§% + j(m - 2j) + (m - j))n

>0
20+ (m—-3)(G+n—(m-3)(G+1n=0.

Hence,

(Zj:kp)Jr(m—j)

= >J”+(m—1)

Y2
izl T G+ Dn+g
ki + ( ) kr(r+1)) +kj+] (

r=1

We claim that, for 3<n<m+1,

jntm—j _ (%5 + (252

7 > .
0 G+ On+5° B+ (5]
Let f(j) = w We show that f(j) is decreasing for all integers j > 0,
G+1)n+j

i.e., f( +1) > f(j) for all integers j > 0. By using n < m + 1, we have

G+)n+m -G+ DG+ Dn+5] =[G +2)n+ (G +1)]in+m - j]
=n’-(m+1)n-m<0

for all integers j > 0.
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[t 242)

PN

Since 0 < j < [252], f(5) >
(5), (6) and (7), we have

i.e., the inequality (7) holds, and by

S| (255 In + (252

> for3<n<m+1land m < 2.
w((X™,e) - S) [1‘3'—1]11 + [m_2—1_]

We claim that, forn > m + 2

jnt(m—j) m

®) G+ln+j  n

hold for all integers j > 0.
Clearly, if j = 0, then (8) is an equality. Since n > m + 2, we have

3n+1) (n+1)2-3(n+1) n’-n-2 n?®-n

msn m+D) -5 (n+1) n+1 n+1

ie.,

2

n?—-n>mn+1) orn® —-n-mn—-—m>0.

Since (jn + (m — j))n — ((j + )n + j)m = j(n? — n — mn — m) > 0 for integers
j > 0, the inequality (8) holds tor all integers j > 0. By (5), (6) and (8), we have

__s m
w((Xm™,e)=8) " n

3

forn>m+2and m > 2.

The proof of Theorem 3 goes as follows:
(i) Forn = 1 and m > 2, we have X = K(1,1), and (X™,¢) is the following graph:

V11 V21 V31 VU(m-1)1 Umi

V12 V22 V32 V(m—1)2 Um2

(X™,¢e) is a Hamiltonian graph. In [4], a result states that the toughness of a
Hamiltonian graph is > 1. Let S = {v11,v22,v31,...,Um1} if m is odd, and S =
{v11,v22,...,Um2} if m is even. Then |S| = w((X™,e) - 5) = %lV(X’",e)l, and
ar)—(—l-‘ﬂm = 1. Hence, t(X™,e) = 1.
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(ii) For n = 2, m even and m > 2, we have X = K(1,2), and (X™,¢) is the

following graph:

v12 Vg2 V32 V42 Um-2)2  U(m-1)2 Um2
V11 V21 v31 V41 UYm-2)1 |Um-1)1 |Um1
V13 V23 V33 V43 V(m—-2)3 U(m-1)3 Um3

Since m is even and m > 2, (X ™, ¢) has a Hamiltonian cycle: via —voo —v3z —...—

V(m—2)2 ~VY(m—1)2 ~Vm2 —VUml = VUm3 ~VU(m-1)3 ~V(m-1)1 ~VY(m-2)1 “V(m—-2)3 - V41 —
V43 — U3z — V31 — U1 — V23 — V13 — v11. Lhus, by the result in [4], t(Xm,E) > 1. Let
S = {v11,V22,V23, V31, V42, V43, - - -, U(m—1)1,Um2, Um3}. Then [S| = w((X™,€) - §) =
m S m
%]V(X ,e)|, and S =5 = 1. Hence, t(X™,e) = 1.
We shall prove (iv) first before we prove (iii).
(iv) For n > 3 and m > 2, we have X = K(1,n). By Lemma 3, we have

n o [EF I+ 25
X9 < (a2

By Lemma 13, we have, for 3<n <m+1 and m > 2,
m—1 m+2
n +
(xme > Lt ]
[ n + (75

Hence, (iv) holds.

(iii) For n = 2, m = odd and m > 2, we have X = I{(1,2). The note at the end of
Lemma 3 states that Lemma 3 also holds for n = 2,m being odd and m > 2. Thus
Lemmas 5, 7, 9, 11 and 13 also hold for this case, and

{m_—l]g + [mf_?]
t(X™, ) = fﬁl]ﬂ[Til—] where m is odd and m > 2,
2 2

ie.,
(2512 + (=) 2m—-2+4m+1  3m-1
t(X™ ) = T = = .
(B)2+ 2L 2m4+2+m -1 3m+1
.,Um1 } be a disconnecting set in (X™,¢). Then |S| =m,

(V) Let S = {1)11,1)21, ..
and w((X™,e) — S) =n, i.e, for each j = 2,3,...,n+ 1, the chain vi; — vg; — v3;

... — U is a component in the induced graph (X™,e) — S, and there are n of them.

Thus,
151
(X" e ———— =
X< S -9)

SE
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By Lemma 13, for n > m + 2 and m > 2, we have t(X™,¢e) > Z. Hence,
m
t(X™e)=— forn>2m+2and m > 2.
n

(vi) Let n > 1, m > 2 and X = K(1,n). We want to show that

m

Casel. n=1and m > 2. With X = K(1,1), (X™, (12)) and (X™,¢) are clearly
isomorphic. Thus, t(X™,(12)) = t(X’" e) =1= , and t(X™,(12)) =
n—Tm holds for n =1 and m >

Case 2. n > 2and m > 2. Let S € F(X™,(12)). Then by Lemma 4, we know
that

(1—1)+m

s om
w((X™,(12))-8) ~ (n—-1)+m
We claim that there exists a S’ € F(X™, (12)) such that

<1

S: = {Uil} for 7= 1,2,...,m.

Let S € F(X™,(12)) such that S; # {vi1} for some i. By Lemma 8, 10, 12,
1<i<m,uvy &S;, Vi-1)1 € Si—1, and v(i41)1 € Siy1. Since S; # ¢, there exists a
vertex v;; € S; such that j = min{¢ > 2; v € S;}. Let S; = (S; \ {vij}) U{vi1} and
S’ =5,USU...US;_1USU...US,,. Then {v;2} is a component of (X™, (12))-S".
Thus,

w((X™,(12)) = 8') > w((X™,(12)) - 5)

ie., S’ € F(X™,(12)). By Lemma 8, S} = {vi1 }

Repeatedly using the above method on 1 < ¢ < m, we have that S’ € F(X™,(12))
such that S! = {vi} fori=1,2,3,...,m.

Hence, by Lemma 2,

t(X’",(12>)=ﬁ for n>2 and m3>2

]

The authors wish to thank Jingming Guo and Bin Li for pointing out a gap in the
proof of Theorem 3.
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