Previous |  Up |  Next

Article

Keywords:
spaces of linear and compact operators; non existence of projections; copies of $c_0$; Approximation properties; non existence of norm one projection; Hahn-Banach extensions
Summary:
In the first part of the paper we prove some new result improving all those already known about the equivalence of the nonexistence of a projection (of any norm) onto the space of compact operators and the containment of $c_0$ in the same space of compact operators. Then we show several results implying that the space of compact operators is uncomplemented by norm one projections in larger spaces of operators. The paper ends with a list of questions naturally rising from old results and the results in the paper.
References:
[BD] J. Bourgain, F. Delbaen: A class of special ${\mathcal L}_\infty $ spaces. Acta Math. 145 (1980), 155–176. DOI 10.1007/BF02414188 | MR 0590288
[B] R. D. Bourgin: Geometric aspects of convex sets with the Radon-Nikodym property LNM 993. Springer Verlag, 1983. MR 0704815
[DU] J. Diestel, J. J. Uhl, jr.: Vector Measures. Math. Surveys 15, Amer. Math. Soc., 1977. MR 0453964
[DS] N. Dunford, J. T. Schwartz: Linear Operators, part I. Interscience, 1958.
[E1] G. Emmanuele: About certain isomorphic properties of Banach spaces in projective tensor products. Extracta Math. 5 (1) (1990), 23–25.
[E2] G. Emmanuele: Remarks on the uncomplemented subspace $W(E, F)$. J. Funct. Analysis 99 (1) (1991), 125–130. DOI 10.1016/0022-1236(91)90055-A | MR 1120917 | Zbl 0769.46006
[E3] G. Emmanuele: A remark on the containment of $c_0$ in spaces of compact operators. Math. Proc. Cambridge Phil. Soc. 111 (1992), 331–335. DOI 10.1017/S0305004100075435 | MR 1142753
[E4] G. Emmanuele: About the position of $K_{w^\ast }(X^\ast , Y)$ inside $L_{w^\ast }(X^\ast , Y)$. Atti Seminario Matematico e Fisico di Modena, XLII (1994), 123–133. MR 1282327
[E5] G. Emmanuele: Answer to a question by M. Feder about $K(X, Y)$. Revista Mat. Universidad Complutense Madrid 6 (1993), 263–266. MR 1269756 | Zbl 0813.46013
[F1] M. Feder: On subspaces of spaces with an unconditional basis and spaces of operators. Illinois J. Math. 24 (1980), 196–205. DOI 10.1215/ijm/1256047715 | MR 0575060 | Zbl 0411.46009
[F2] M. Feder: On the non-existence of a projection onto the spaces of compact operators. Canad. Math. Bull. 25 (1982), 78–81. DOI 10.4153/CMB-1982-011-0 | MR 0657655
[GKS] G. Godefroy, N. J. Kalton, P. D. Saphar: Unconditional ideals in Banach spaces. Studia Math. 104 (1) (1993), 13–59. MR 1208038
[J1] K. John: On the uncomplemented subspace $K(X, Y)$. Czechoslovak Math. Journal 42 (1992), 167–173. MR 1152178 | Zbl 0776.46016
[J2] K. John: On the space $K(P, P^\ast )$ of compact operators on Pisier space $P$. Note di Matematica 72 (1992), 69–75. MR 1258564
[Jo] J. Johnson: Remarks on Banach spaces of compact operators. J. Funct. Analysis 32 (1979), 304–311. DOI 10.1016/0022-1236(79)90042-9 | MR 0538857 | Zbl 0412.47024
[JRZ] W. B. Johnson, H. P. Rosenthal, M. Zippin: On bases, finite dimensional decompositions and weaker structures in Banach spaces. Israel J. Math. 9 (1971), 488–506. DOI 10.1007/BF02771464 | MR 0280983
[Ka1] N. J. Kalton: Spaces of compact operators. Math. Annalen 208 (1974), 267–278. DOI 10.1007/BF01432152 | MR 0341154 | Zbl 0266.47038
[Ka2] N. J. Kalton: M-ideals of compact operators. Illinois J. Math. 37 (1) (1993), 147–169. DOI 10.1215/ijm/1255987254 | MR 1193134 | Zbl 0824.46029
[Le] D. R. Lewis: Conditional weak compactness in certain inductive tensor products. Math. Annalen 201 (1973), 201–209. DOI 10.1007/BF01427942 | MR 0326417 | Zbl 0234.46069
[Li1] Å. Lima: Uniqueness of Hahn-Banach extensions and lifting of linear dependence. Math. Scandinavica 53 (1983), 97–113. DOI 10.7146/math.scand.a-12019 | MR 0733942
[Li2] Å. Lima: The metric approximation property, norm one projections and intersection properties of balls. Israel J. Math (to appear). MR 1244680 | Zbl 0814.46016
[LORW] Å. Lima, E. Oja, T. S. S. R. K. Rao, D. Werner: Geometry of operator spaces. Preprint 1993. MR 1297703
[LTI] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Sequence Spaces EMG 92. Springer Verlag, 1977. MR 0500056
[LTII] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Function Spaces EMG 97. Springer Verlag, 1979. MR 0540367
[NP] I. Namioka, R. R. Phelps: Banach spaces which are Asplund spaces. Duke Math. J. 42 (1975), 735–750. DOI 10.1215/S0012-7094-75-04261-1 | MR 0390721
[P] A. Pelczynski: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. 10 (1962), 641–648. MR 0149295 | Zbl 0107.32504
[Ru] W. Ruess: Duality and Geometry of spaces of compact operators. Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North Holland, 1984. MR 0761373 | Zbl 0573.46007
[Wi] G. Willis: The compact approximation property does not imply the approximation property. Studia Math. 103 (1) (1992), 99–108. DOI 10.4064/sm-103-1-99-108 | MR 1184105 | Zbl 0814.46017
Partner of
EuDML logo