Previous |  Up |  Next

Article

References:
[1] A. Agarwal: Boundary Value Problems for Higher Order Differential Equations. World Scientific, Singapore, Philadelphia, 1986. MR 1021979 | Zbl 0619.34019
[2] J. Dugundji, A. Granas: Fixed Point Theory, Vol. I. Monografie Matematyczne, PNW Warsaw, 1982.
[3] C. Fabry, P. Habets: The Picard boundary value problem for non linear second order vector differential equations. J. Differential Equations 42 (1981), 186–198. DOI 10.1016/0022-0396(81)90025-5 | MR 0641647
[4] C. Fabry: Nagumo conditions for systems of second order Differential Equations. J. Math. Anal. Appl. 107 (1985), 132–143. DOI 10.1016/0022-247X(85)90358-0 | MR 0786017 | Zbl 0604.34002
[5] S. Ntouyas, P. Tsamatos: Existence of solutions of boundary value problems for functional differential equations. Internal. J. Math. and Math. Sci. 14 (1991), 509–516. DOI 10.1155/S0161171291000698 | MR 1110049
[6] S. Ntouyas, P. Tsamatos: On well-posedness of boundary value problems involving deviating arguments. Funkcial. Ekvac. 35 (1992), 137–147. MR 1172426
[7] S. Ntouyas, P. Tsamatos: Nagumo type conditions for second order differential Equations with Deviating Arguments. (to appear). MR 1669777
[8] S. Shan, J. Wiener: Reducible functional differential equations. Internal J. Math. and Math. Sci. 8 (1985), 1–27. DOI 10.1155/S0161171285000011 | MR 0786947
[9] P. Tsamatos, S. Ntouyas: Existence of solutions of boundary value problems for differential equations with deviating arguments, via the topological transversality method. Proc. Royal Soc. Edinburgh 118A (1991), 79–89. MR 1113845
[10] J. Wiener, A. Aftabizadeh: Boundary Value Problems for Differential Equations with Reflection of the Arguments. Internat. J. Math. and Math. Sci. 8 (1985), 151–163. DOI 10.1155/S016117128500014X | MR 0786960
Partner of
EuDML logo