[4] Blair, D.:
When is the tangent sphere bundle locally symmetric?. Geom. Topol., World Sci. Publishing, Singapore (1989), 15–30.
MR 1001586
[5] Boeckx, E., Vanhecke, L.:
Characteristic reflections on unit tangent sphere bundles. Houston J. Math. 23 (1997), 427–448.
MR 1690045 |
Zbl 0897.53010
[6] Boeckx, E., Vanhecke, L.: Geometry of the tangent sphere bundle. Proceedings of the Workshop on Recent Topics in Differential Geometry (Cordero, L. A., García-Río, E., eds.), Santiago de Compostela, 1997, pp. 5–17.
[7] Boeckx, E., Vanhecke, L.:
Curvature homogeneous unit tangent sphere bundles. Publ. Math. Debrecen 35 (1998), 389–413.
MR 1657491
[11] Borisenko, A. A., Yampolsky, A. L.: On the Sasaki metric of the tangent and the normal bundles. Sov. Math., Dokl. 35 (1987), 479–482.
[12] Borisenko, A. A., Yampolsky, A. L.: The sectional curvature of the Sasaki metric of $T_rM^n$. Ukrain. Geom. Sb. 30 (1987), 10–17.
[14] Calvaruso, G.:
Contact metric geometry of the unit tangent sphere bundle. Complex, contact and symmetric manifolds. In honor of L. Vanhecke (Kowalski, O. et al, ed.), vol. 234, Progress in Mathematics, 2005, pp. 41–57.
MR 2105140 |
Zbl 1079.53045
[16] Kobayashi, S., Nomizu, K.:
Foundations of Differential Geometry II. Interscience Publishers, New York–London–Sydney, 1969.
MR 0238225
[17] Kowalski, O., Sekizawa, M.:
Geometry of tangent sphere bundles with arbitrary constant radius. Proceedings of the Symposium Contemporary Mathematics (Bokan, N., ed.), Faculty of Mathematics, University of Belgrade, 2000, pp. 219–228.
MR 1848571 |
Zbl 1024.53030
[19] Kowalski, O., Sekizawa, M.:
On the scalar curvature of tangent sphere bundles with arbitrary constant radius. Bull. Greek Math. Soc. 44 (2000), 17–30.
MR 1848571 |
Zbl 1163.53321
[20] Kowalski, O., Sekizawa, M.:
On Riemannian manifolds whose tangent sphere bundles can have nonnegative sectional curvature. Univ. Jagellon. Acta Math. 40 (2002), 245–256.
MR 1962729 |
Zbl 1039.53050
[21] Kowalski, O., Sekizawa, M., Vlášek, Z.:
Can tangent sphere bundles over Riemannian manifolds have strictly positive sectional curvature?. Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Fernandez, M. and Wolf, J. A., eds.), Contemp. Math. 288 (2001), 110–118.
DOI 10.1090/conm/288/04820 |
MR 1871003 |
Zbl 1011.53034
[22] Nagy, P. T.:
Geodesics on the tangent sphere bundle of a Riemannian manifold. Geom. Dedicata 7 (1978), 233–243.
MR 0487892 |
Zbl 0385.53010
[23] Nash, J.:
Positive Ricci curvature on fiber bundles. J. Differential Geom. 14 (1979), 241–254.
MR 0587552
[24] Podestà, F.:
Isometries of tangent sphere bundles. Boll. Un. Mat. Ital. A(7) 5 (1991), 207–214.
MR 1120381
[27] Wolf, J. A.:
Elliptic spaces in Grassmann manifolds. Illinois J. Math. 7 (1963), 447–462.
MR 0156295
[28] Yampolsky, A. L.:
On the geometry of tangent sphere bundles of Riemannian manifolds. Ukrain. Geom. Sb 24 (1981), 129–132, in Russian.
MR 0629822
[29] Yampolsky, A. L.: On Sasaki metric of tangent and normal bundle. Ph.D. thesis, Odessa, 1986, (Russian).