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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 44 (2008), 391–401

ON RIEMANNIAN GEOMETRY OF TANGENT SPHERE
BUNDLES WITH ARBITRARY CONSTANT RADIUS

Oldřich Kowalski and Masami Sekizawa

Abstract. We shall survey our work on Riemannian geometry of tangent
sphere bundles with arbitrary constant radius done since the year 2000.

Introduction

Let r be a positive real number. Then the tangent sphere bundle of radius r over a
Riemannian manifold (M, g) is the hypersurface TrM = {(x, u) ∈ TM | gx(u, u) =
r2} of the tangent bundle TM . Many papers have been written about the geometry
of the unit tangent sphere bundle T1M over a Riemannian manifold (M, g) with
the metric g̃s induced by the Sasaki metric gs on TM . The geometry of (T1M, g̃s)
is not so rigid as that of (TM, gs) and more interesting results can be derived (see,
for example, [4, 5, 6, 7, 8, 10, 24, 29]). We refer to E. Boeckx and L. Vanhecke
[9] and G. Calvaruso [14] for surveys on the geometry of (T1M, g̃s). More general
metrics on T1M have been treated by M. T. K. Abbassi and G. Calvaruso in [1].
They have studied properties of metrics on T1M induced from g-natural metric on
the tangent bundle TM . The present authors have published the original papers
[18, 19, 21, 20] about this topic. Here we are going to survey our results.

1. Tangent sphere bundles with arbitrary constant radius

If (U; x1, x2, . . . , xn) is a system of local coordinates in the base manifold
M , then a vector u ∈ Mx is expressed as u =

∑n
i=1 u

i(∂/∂xi)x, and hence
(p−1(U); x1, x2, . . . , xn, u1, u2, . . . , un) is a system of local coordinates in the tan-
gent bundle TM over M . The canonical vertical vector field on TM is a vector field
U defined, in terms of local coordinates, by U =

∑n
i=1 u

i∂/∂ui. The vector field U
does not depend on the choice of local coordinates and it is defined globally on TM .
For a vector u =

∑n
i=1 u

i(∂/∂xi)x ∈Mx, we see that uh(x,u) =
∑n
i=1 u

i(∂/∂xi)h(x,u)
and uv(x,u) =

∑n
i=1 u

i(∂/∂xi)v(x,u) = U (x,u).
The canonical vertical vector field U is normal to TrM in (TM, ḡ) at each point

(x, u) ∈ TrM . Also, ḡ(U ,U) = r2 along TrM . For any vector field X tangent to M ,
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the horizontal lift Xh to TM is always tangent to TrM at each point (x, u) ∈ TrM .
Yet, in general, the vertical lift Xv to TM is not tangent to TrM at (x, u) ∈ TrM .
The tangential lift of X (see [10]) is a vector field Xt defined by

Xt = Xv − 1
r2 g
s(Xv,U)U ,

which is tangent to TrM at (x, u) ∈ TrM .
From now on, simplifying the notations, we denote by ḡ the Sasaki metric gs on

the tangent bundle TM and by g̃ the metric induced by ḡ on the tangent sphere
bundle TrM of radius r > 0. Also we use the symbol 〈·, ·〉 for the scalar product gx
on the tangent space Mx at x ∈M . The Riemannian metric g̃ on the hypersurface
TrM ⊂ (TM, ḡ) induced by ḡ on TM is uniquely determined by the formulas

g̃(Xh, Y h) = ḡ(Xh, Y h) ,

g̃(Xh, Y t) = 0 ,

g̃(Xt, Y t) = ḡ(Xv, Y v)− 1
r2 ḡ(Xv,U)ḡ(Y v,U)

for arbitrary vector fields X and Y on M .

1.1. Sectional curvature.
It is obvious that each tangent two-plane P̃ ⊂ (TrM)(x,u) is spanned by an
orthonormal basis of the form {X1

h + Y1
t, X2

h + Y2
t}. For such a basis we have

‖Xi‖2 + ‖Yi‖2 = 1, i = 1, 2, and 〈X1, X2〉+ 〈Y1, Y2〉 = 0. Moreover, we can assume
〈X1, X2〉 = 〈Y1, Y2〉 = 0. This can be reached easily by a convenient rotation of
the given basis. As usual, Y1 and Y2 are supposed to be orthogonal to u. Then the
tangential lifts Y1

t and Y2
t coincide with the vertical lifts Y1

v and Y2
v, respectively.

From the formulas for the curvature operators one obtains as in [18] the following
formula for the sectional curvature of the two-plane P̃ :

K̃(P̃ ) = 〈Rx(X1, X2)X2, X1〉+ 3 〈Rx(X1, X2)Y2, Y1〉+ 1
r2 ‖Y1‖2‖Y2‖2

− 3
4‖Rx(X1, X2)u‖2 + 1

4‖Rx(u, Y2)X1‖2 + 1
4‖Rx(u, Y1)X2‖2

+ 1
2 〈Rx(u, Y1)X2, Rx(u, Y2)X1〉 − 〈Rx(u, Y1)X1, Rx(u, Y2)X2〉

+ 〈(∇X1R)x(u, Y2)X2, X1〉+ 〈(∇X2R)x(u, Y1)X1, X2〉 .

(1.1)

We start with study on the sign of the sectional curvature, and its slight
generalization.

Theorem 1.1 ([18]). Let (M, g) be either locally symmetric with positive sectional
curvature or locally flat, n = dimM ≥ 2. Then, for each sufficiently small positive
number r, the tangent sphere bundle (TrM, g̃) is a space of nonnegative sectional
curvature.
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Sketch of the proof. We choose an orthonormal basis {X1
h + Y1

t, X2
h + Y2

t} =
{X1

h + Y1
v, X2

h + Y2
v} for the tangent two-plane P̃ of TrM at (x, u) ∈ TrM

as above. Then there are orthonormal pairs {X̂1, X̂2} and {Ŷ1, Ŷ2}, and angles
α, β ∈ [0, π/2] such that

X1 = cosα X̂1 , Y1 = sinα Ŷ1 ;

X2 = cosβ X̂2 , Y2 = sin β Ŷ2 .

Also there are positive numbers L1 and L2 such that∣∣〈Rx(X̂1, X̂2)Ŷ2Ŷ1〉
∣∣ < L1 ,

∣∣〈Rx(Ẑ, Ŷ1)X̂1, Rx(Ẑ, Ŷ2)X̂2
∣∣〉 < L2 .

Estimating (1.1) from below, we obtain for sufficiently small r > 0 that

(1.2) K̃(P̃ ) ≥
(
εA− B

r

)2
+ 2AB

(ε
r
− L

)
,

where A = cosα cosβ, B = sinα sin β, L = 3(2L1 + L2)/4 and ε is a positive
constant. The right-hand side of (1.2) becomes nonnegative for all sufficiently small
positive numbers r. �

This result is closely connected with those by A. A. Borisenko and A. L. Yam-
polsky [12, 11, 28, 29]. Its equivalent was claimed to be proved for the first time
in [13] using a special criterion (see [13, Theorem 3.6], [12, Theorem 1] and also
[11]). Yet, the proof is not completely rigorous. Our new proof is rigorous and
different from that given by A. A. Borisenko and A. L. Yampolsky. As is well-known,
every locally symmetric space with strictly positive sectional curvature is locally
isometric to a rank one symmetric space of compact type. This gives the link
between Theorem 1.1 and the result claimed in [13, p.79].

Theorem 1.2 ([20]). Let (M, g) be an n-dimensional Riemannian locally symme-
tric space with nonnegative sectional curvature, n ≥ 3. Then, for each sufficiently
small positive number r > 0, the tangent sphere bundle (TrM, g̃) is a space of
nonnegative sectional curvature.

Sketch of the proof. Because the statement of the Theorem is purely local, we
can assume that (M, g) itself is globally symmetric and simply connected. Then
we have the de Rham decomposition:

(M, g) = (M0, g0)× (M1, g1)× · · · × (Ms, gs) ,
where (M0, g0) is the Euclidean part and all (Mi, gi) for i = 1, 2, . . . , s are irreducible
symmetric spaces of compact type. We take a two-plane P̃ as in the proof of
Theorem 1.1. If both X̂1 and X̂2 are tangent to M0, then, from the formula (1.1),
we see at once that K̃(P̃ ) ≥ 0. If X̂1 and X̂2 are tangent to an irreducible factor Mi,
i = 1, 2, . . . , s, then we can use the same argument as in the proof of Theorem 1.1
to show that K̃(P̃ ) ≥ 0 holds for every choice of an orthonormal triplet {Ŷ1, Ŷ2, û}
in Mx and for all radii r > 0 depends only on the geometry of (M, g). Finally,
let X̂1 and X̂2 be tangent to two different components Mi and Mj , i 6= j. Then
Rx(X̂1, X̂2) = 0. So we can easily obtain the assertion of the Theorem. �
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Under the hypothesis of Theorem 1.2, we can see easily from Theorem 1.9 below
that (TrM, g̃) is never a space of strictly positive sectional curvature. On the other
hand, if (M, g) is a two-dimensional standard sphere, then (TrM, g̃) is a space of
positive sectional curvature according to the criterion by A. L. Yampolsky in [28].

The natural problem now is the question whether the conclusion of Theorem 1.2
may also hold for Riemannian manifolds which are not locally symmetric. We
have not definitely solved this problem but some new evidence was given that the
converse of Theorem 1.2 might hold, too. The first step in this direction has been
made in [18]:
Theorem 1.3 ([18]). There exist arbitrarily small perturbations of a spherical
cap of the standard four-sphere with the following property: if (M, g) is such a
perturbation, then (TrM, g̃) admits negative sectional curvatures for every positive
number r.
Sketch of the proof. Let B ⊂ R4[u1, . . . , u4] be the open ball with center at the
origin o and with radius 1− ε, where ε is a small positive number. Let φ : B −→ R5

be the map given by the formula

(1.3) φ(u) =
(
u1, u2, u3, u4,

√
1−

∑
(ui)2 − F (u)

)
,

where F (u) = ε1u
2u4 + ε2(u1)2u3. Obviously, the smooth graph M = φ(B) is

well-defined if ε1 > 0 and ε2 > 0 are small enough. Now the idea of the proof is
that, for arbitrary small radius r > 0, we show the existence of a tangent two-plane
in TrM over the origin φ(o) ∈M such that its sectional curvature is negative. First
we make a special choice (φ(o), u0) ∈ TrM and a special choice of a two-plane in
the corresponding tangent space. Next we express the sectional curvature through
certain trigonometric functions and finally we show that this expression becomes
negative asymptotically. See more details in the proof of Theorem 1.5 below. The
software Mathematica 3.0 is used here for deriving some more advanced general
formula. �

To find an algebraic modification of Theorem 1.3, we have proved first the
following Lemma:
Lemma 1.4 ([20]). Let x be a fixed point of a Riemannian manifold (M, g). Then ei-
ther there is an orthonormal triplet {X,Y, Z} of Mx such that 〈(∇XR)x(X,Y )Y, Z〉
6= 0 or (∇R)x = 0 identically.

Now we have
Theorem 1.5 ([20]). Let (M, g) be an n-dimensional Riemannian manifold, n ≥ 3,
and let x be a spherical point of M, i.e., such that all sectional curvatures at x
are constant. Moreover, let the covariant derivative (∇R)x of the Riemannian
curvature tensor R be nonzero. Then, for every r > 0, there is a vector u ∈ Mx,
‖u‖ = r, such that the tangent space (TrM)(x,u) contains a two-plane with negative
sectional curvature.
Sketch of the proof. Because (∇R)x is nonzero, then, according to the Lemma 1.4,
there is an orthonormal triplet {Z1, Z2, Z3} in the tangent space Mx such that
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b = 〈(∇Z1R)x(Z2, Z3)Z2, Z1〉 > 0. We put
X1 = Z1 , Y1 = 0 , X2 = cosβ Z2 , Y2 = − sin β Z3 , u = rZ2 ,

where r > 0 and β ∈ (0, π/2). Further, we put c = K(Z1∧Z2) > 0. Finally, let P̃ be
the tangent two-plane spanned by X1

h and X2
h + Y2

t in (TrM)(x,u). Since x ∈M
is a spherical point, we have ‖Rx(X1, X2)u‖ = cr cosβ and Rx(u, Y2)X1 = 0. Thus,
from (1.1), we obtain

K̃(P̃ ) = cosβ
(
c cosβ − 3

4c
2r2 cosβ − br sin β

)
,

which becomes negative for β ∈ (0, π/2) tending to π/2. �

Corollary 1.6 ([20]). Let (M, g) be a Riemannian manifold such that the covariant
derivative ∇R of the Riemannian curvature tensor R is nonzero everywhere. If, for
some radius r > 0, the tangent sphere bundle (TrM, g̃) has nonnegative sectional
curvature, then (M, g) has no spherical points.

We have also proved, with the exception dimM = 8, that the tangent sphere
bundles are never spaces of strictly positive curvature. We proceed as follows:
Proposition 1.7 ([21, 29]). Let (M, g) be an n-dimensional Riemannian manifold
such that n ≥ 3, n 6= 4, 8. Then, at every point x ∈M , there are unit vectors X,
Y and Z in the tangent space Mx such that 〈X, Y 〉 = 0 and Rx(X,Y )Z = 0.
Sketch of the proof due to A. L. Yampolsky [29]. Suppose that there is a point x ∈M
such that Rx(X,Y )Z 6= 0 holds for every triplet {X,Y, Z} of unit vectors satisfying
〈X,Y 〉 = 0. Let {E1, E2, . . . , En} be an orthonormal basis of (Mx, 〈·, ·〉). Then the
vector (Vi)Z = TZ(Rx(Ei, En)Z) 6= 0 is always tangent to the unit sphere Sx ⊂Mx
at the end-point of Z, where TZ : Mx −→ (TM)Z is a canonical isomorphism given

by TZ(W ) = d
dt

∣∣∣∣
0

(Z+ tW ) for all W ∈Mx. Now the vector fields V1,V2, . . . ,Vn−1

on the sphere Sx are linearly independent. Hence Sx is parallelizable. Thus, from
the well-known theorem by J. F. Adams [2], we see that n = 2, 4 and 8. �

Proposition 1.8 ([21]). Let n = 4 and suppose, in addition, that (M, g) is a space
of positive sectional curvature. Then the conclusion of Proposition 1.7 still holds.
Sketch of the proof. We prove the existence of at least one solution of the equation
Rx(X,Y )Z = 0 such that X ∧ Y 6= 0 and Z 6= 0. Using the so-called Chern basis
in the tangent space, we reduce the number of the curvature components. Then we
show that the wanted property follows from the fact that a certain homogeneous
quadratic polynomial Q of three variables (whose coefficients are functions of
the curvature components) is never positive definite or negative definite. Here a
careful discussion of several cases must be done, and the positivity of the sectional
curvature of (M, g) as well as the continuity argument are applied. �

We can not remove the assumption about the positive sectional curvature in
Proposition 1.8. In fact, S. Ivanov and I. Petrova have found in [15], among spaces
with sign-changing sectional curvature, an example on which there do not exist
nontrivial solutions of the equation Rx(X,Y )Z = 0.
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Theorem 1.9 ([21]). Let (TrM, g̃) be a tangent sphere bundle over an n-dimensio-
nal Riemannian manifold (M, g) such that n ≥ 3, n 6= 8. Then (TrM, g̃) is never a
space of positive sectional curvature.
Sketch of the proof. Suppose that (TrM, g̃) with arbitrary fixed r > 0 has
positive sectional curvature K̃(P̃ ). Putting Y1 = Y2 = 0 in the formula (1.1) we
see at once that (M, g) is a space of positive sectional curvature. Hence, by the
above two Propositions, there are unit vectors X,Y, Z ∈Mx such that 〈X, Y 〉 = 0
and Rx(X,Y )Z = 0. From the general formula (1.1), in which we take u = X, we
obtain K̃(span{Y t, Zh}) = 0, which is a contradiction. �

It remains an open problem if Theorem 1.9 and Proposition 1.7 still hold in
dimension n = 8.

The following result shows that the conclusion of Theorem 1.2 is the best possible
for n ≥ 3.
Theorem 1.10 ([21]). Let (TrM, g̃) be a tangent sphere bundle over an n-dimen-
sional locally symmetric Riemannian manifold (M, g), n ≥ 3, and r be an arbitrary
positive number. Then (TrM, g̃) is never a space of positive sectional curvature.
Sketch of the proof. If n = 3, then the result follows from Theorem 1.9 (or it
can be proved directly in an easy way). Suppose now that n ≥ 4. Then, recalling
a theorem by J. A. Wolf [27, Theorem 1], we see that there exists a rank one
symmetric space N ⊂M of compact type which is a totally geodesic submanifold
of dimension four. Now Proposition 1.8 is valid for N and hence it is valid also for
M . The rest of the proof is the same as that for Theorem 1.9. �

Now we look for the converse to Theorem 1.2.
Proposition 1.11 ([20]). Let (M, g) be an n-dimensional Riemannian manifold
with nonnegative sectional curvature, n ≥ 3, and let x ∈ M be a point such that
the covariant derivative (∇R)x of the Riemannian curvature tensor R is nonzero.
Then, for every sufficiently large r > 0, there is a vector u ∈ Mx, ‖u‖ = r, such
that the tangent space (TrM)(x,u) contains a two-plane with negative sectional
curvature.
Sketch of the proof. We write Rx(Z1, Z2)Z2 = cZ1 + W , where W ∈ Mx is
orthogonal to Z1. Hence, putting C = ‖Rx(Z1, Z2)Z2‖, we get C ≥ c > 0. Put
D = ‖Rx(Z2, Z3)Z1‖ ≥ 0. Now, from (1.1), we obtain, for the two-plane P̃ as in
the the proof of Theorem 1.5, that

K̃(P̃ ) = r sin β
(1

4rD
2 sin β − b cosβ

)
+ cos2 β

(
c− 3

4C
2r2
)
.

The second term is zero for C = 0 and every r > 0; and it is nonpositive for
C > 0 and for every r ≥ 2

√
c /(
√

3 C). Let us fix a number r > 0 for which this
second term is nonpositive. The first term is then negative for all β ∈ (0, π/2) such
that ctg β > rD2/(4b). Thus a two-plane at (x, u) ∈ TrM with negative sectional
curvature exists. �

Thus, we obtain easily the following “nonstandard” converse of Theorem 1.2.
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Theorem 1.12 ([20]). Let (M, g) be an n-dimensional Riemannian manifold,
n ≥ 3, such that, for all sufficiently large radii r > 0, the tangent sphere bundles
(TrM, g̃) over (M, g) are spaces of nonnegative sectional curvature. Then the space
(M, g) is locally symmetric.

In the rest of this section we assume that the conformal Weyl tensor W vanishes.
This assumption reads that either dimM = 3, or dimM > 3 and (M, g) is
conformally flat.

Lemma 1.13 ([20]). Let (M, g), dimM ≥ 3, be a Riemannian manifold such
that the conformal Weyl tensor W vanishes. Let {E1, E2, . . . , En} be a basis of Mx
which diagonalizes the Ricci tensor Ricx. Then Rx(Ei, Ej)Ek = 0 for every triplet
of distinct indices {i, j, k}.

Lemma 1.14 ([20]). Let x be a fixed point of a Riemannian manifold (M, g),
dimM ≥ 3, such that the conformal Weyl tensor W vanishes and let 〈(∇XR)x
(X,Z)Y, Z〉 = 0 holds whenever {X,Y, Z} is an orthonormal triplet in Mx such
that Rx(X,Y )Z = 0. Then (∇R)x = 0 identically.

Theorem 1.15 ([20]). Let (M, g) be a Riemannian manifold such that the confor-
mal Weyl tensor W vanishes (in particular, let dimM = 3). If the tangent sphere
bundle (TrM, g̃) is a space of nonnegative sectional curvature for some radius r > 0,
then (M, g) is locally symmetric.

Sketch of the proof. Let us suppose that the space (M, g) is not locally symmetric.
Then, at some point x ∈M we have (∇R)x 6= 0. According to Lemma 1.14, there is
an orthonormal triplet {Z1, Z2, Z3} in Mx such that 〈(∇Z1R)x(Z1, Z2)Z2, Z3)〉 > 0
and, at the same time, Rx(Z1, Z2)Z3 = 0. Then, using the same procedure as in
the proof of Theorem 1.5, we find for every r > 0 a tangent two-plane of TrM with
negative sectional curvature, which is a contradiction. �

From this theorem we have deduced the following

Corollary 1.16 ([20]). Let (M, g) be a Riemannian manifold of dimension n such
that the conformal Weyl tensor W vanishes (in particular, let dimM = 3). Then
the tangent sphere bundle (TrM, g̃) is a space of nonnegative sectional curvature
for all sufficiently small radii r > 0 if and only if (M, g) is locally isometric to one
of the following spaces:

Rn , Sn(c) , or Sn−1(c)× R1 ,

where Rn is the Euclidean n-space and Sn(c) is the n-sphere of radius 1/
√
c .

Sketch of the proof. If (TrM, g̃) is a space of nonnegative sectional curvature
for every sufficiently small radius r > 0, then, by Theorem 1.15, (M, g) is locally
symmetric and hence locally isometric to a symmetric space, which is globally
homogeneous. Hence, for n > 3, the result follows from the Theorem by H. Takagi
in [26]. For n = 3, the only simply connected symmetric spaces with nonnegative
sectional curvature are R3, S3(c) and S2(c)× R1. The “only if” part follows from
Theorem 1.2. �
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1.2. Ricci curvature.
According to Theorem 1.9, a tangent sphere bundle equipped with the induced
Sasaki metric can hardly have a strictly positive sectional curvature. In the present
section we show that the situation is different for the Ricci curvature.

Proposition 1.17 ([18]). The Ricci tensor R̃ic of (TrM, g̃) is given, at each fixed
point (x, u) ∈ TrM , by

R̃ic(x,u)(Xh + Y t, Xh + Y t)

= Ricx(X,X) + r
(
(∇ûRic)x(Y,X)− (∇Y Ric)x(û, X)

)
+ r2

[1
4
∑
i

‖Rx(û, Y )Ei‖2 − 1
2
∑
i

‖Rx(û, Ei)X‖2
]

+ n− 2
r2 ‖Y ‖

2 ,

(1.4)

for any X ∈Mx and any Y ∈Mx orthogonal to u such that g̃(x,u)(Xh + Y t, Xh +
Y t) = 1, where Ric is the Ricci tensor of (M, g) and we put û = u/r.

Theorem 1.18 ([18]). Let (M, g) be an n-dimensional compact Riemannian mani-
fold with positive Ricci curvature, n ≥ 3. Then, for each sufficiently small positive
number r, the tangent sphere bundle (TrM, g̃) is a space of positive Ricci curvature.

Sketch of the proof. First we see that the coefficients of r and r2 in the formula
(1.4) are bounded. Then we see that Ric(X,X) + ((n − 2)/(r2))‖Y ‖2 is positive
for sufficiently small positive number r. �

It is worth mentioning that our specific and explicit result is very closely related
to the paper by J. Nash [23] and to that by W. Poor [25], where some general
existence results are proved for Riemannian submersions.

1.3. Scalar curvature.
The scalar curvature of tangent sphere bundle (TrM, g̃) with an arbitrary constant
radius is of particular interest. Namely, we have seen in [18] that it can take, under
some additional assumptions, positive values for small radii and negative values for
large radii. First we show the Proposition, which is a generalization for an arbitrary
radius of the formula given by E. Boeckx and L. Vanhecke in [10].

Proposition 1.19 ([18]). The scalar curvature S̃c(g̃) of (TrM, g̃) at each fixed
point (x, u) ∈ TrM is given by

(1.5) S̃c(g̃)(x,u) = (n− 1)(n− 2)
r2 + Sc(g)x −

1
4r

2ξx(û, û) ,

where û = u/r, Sc(g) is the scalar curvature of (M, g) and ξ is a tensor field on
M given by

ξ(X,Y ) =
∑
i,j

〈R(X,Ei)Ej , R(Y,Ei)Ej〉

for all vector fields X and Y on M and any (local) orthonormal frame {E1, E2, . . . ,
En} on M .
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We should also mention that the formula (1.5) can be generalized to any Riemann-
ian submersion with totally geodesic fibers where the metric of the total space is
subjected to the so-called canonical variation (see [3, Proposition 9.70]). In our
case, the canonical variation corresponds to the “variation” of the constant radius
r > 0 starting from the initial value r = 1.

Theorem 1.20 ([18]). Let (M, g) be an n-dimensional Riemannian manifold with
bounded sectional curvature (or, in particular, let (M, g) be compact), n ≥ 3. Then,
for each sufficiently small positive number r, the tangent sphere bundle (TrM, g̃) is
a space of positive scalar curvature.

Sketch of the proof. We see first that the scalar curvature Sc(g) and the function
ξx(û, û) are bounded on M . The result follows from Proposition 1.19. �

Let us recall notions we need in the following. A Riemannian manifold (M, g) is
called δ-pinched if there are positive numbers δ ≤ 1 and A such that Aδ ≤ K ≤ A
holds for its sectional curvature K. The index of nullity at a point x ∈M is defined
as the dimension of the subspace {X ∈Mx | Rx(X,Y ) = 0 for all Y ∈Mx}. (See,
for example, [16].)

Theorem 1.21 ([18]). Let (M, g) be an n-dimensional δ-pinched Riemannian
manifold (or, alternatively, let (M, g) be compact and such that its index of nullity
is zero at every point), n ≥ 2. Then, for each sufficiently large positive number r,
the tangent sphere bundle (TrM, g̃) is a space of negative scalar curvature.

Sketch of the proof. Let first (M, g) be δ-pinched. Then the scalar curvature
Sc(g) is bounded on M and ξx(û, û) is nonnegative on M for every (x, u) ∈ TrM ,
where we put û = u/r. It is sufficient to prove that ξx(û, û) > δ′ for all (x, u) ∈ TrM
and for some δ′ > 0 which is independent of r. But if we choose an orthonormal
basis {E1, E2, . . . , En} such that En = û, we get

ξx(û, û) =
∑
i,j

‖Rx(En, Ei)Ej‖2 ≥
n−1∑
i=1
‖Rx(En, Ei)Ei‖2

≥
n−1∑
i=1

(Kx(En ∧ Ei))2 ≥ (n− 1)A2δ2 .

Now the result is obvious from (1.5).
Alternatively, if (M, g) is compact and such that its index of nullity is zero

everywhere, we see first that Sc(g) is bounded on M and ξx(û, û) is nonzero and
hence positive for all (x, u) ∈ TrM . Because TrM is compact, we have again
ξx(û, û) > δ′ for some positive number δ′ independent of r. �
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