[1] Bröcker, T., Jänich, K.:
Introduction to Differential Topology. Engl. edition, Cambridge University Press, New York (1982); German ed. Springer-Verlag, New York (1973).
MR 0674117
[3] Earle, C. J., Eells, J.:
A fibre bundle description of Teichmüller theory. J. Differential Geom. 3 (1969), 19–43.
MR 0276999 |
Zbl 0185.32901
[4] Earle, C. J., Schatz, A.:
Teichmüller theory for surfaces with boundary. J. Differential Geom. 4 (1970), 169–185.
MR 0277000 |
Zbl 0194.52802
[5] Galatius, S.: Stable homology of automorphism groups of free groups. arXiv:math/0610216.
[7] Galatius, S., Madsen, I., Tillmann, U., Weiss, M.:
The homotopy type of the cobordism category. arXiv:math/0605249.
MR 2506750
[8] Harer, J.:
Stability of the homology of the mapping class groups of oriented surfaces. Ann. of Math. (2) 121 (1985), 215–249.
MR 0786348
[9] Ivanov, N.:
Stabilization of the homology of the Teichmüller modular groups. Algebra i Analiz 1 (1989), 120–126, translation in Leningrad Math. J. 1 (1990), 675–691.
MR 1015128
[10] Madsen, I., Tillmann, U.:
The stable mapping class group and $Q\mathbb{C}P^\infty _+$. Invent. Math. 145 (2001), 509–544.
DOI 10.1007/PL00005807 |
MR 1856399
[11] Madsen, I., Weiss, M.:
The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. of Math. (2) 165 (2007), 843–941.
MR 2335797 |
Zbl 1156.14021
[13] Miller, E.:
The homology of the mapping class group. J. Differential Geom. 24 (1986), 1–14.
MR 0857372 |
Zbl 0618.57005
[15] Moerdijk, I.:
Classifying spaces and classifying topoi. Lecture Notes in Math. 1616, Springer-Verlag, New York, 1995.
MR 1440857 |
Zbl 0838.55001
[18] Mumford, D.:
Towards an enumerative geometry of the moduli space of curves. Arithmetic and Geometry, Vol. II, Progr. in Maths. series 36, 271–328, Birkhäuser, Boston, 1983, pp. 271–328.
MR 0717614 |
Zbl 0554.14008
[24] Weiss, M.:
What does the classifying space of a category classify?. Homology, Homotopy Appl. 7 (2005), 185–195.
MR 2175298 |
Zbl 1093.57012