[1] Doupovec, M., Mikulski, W. M.: Reduction theorems for principal and classical connections. to appear.
[3] Eck, D. J.:
Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc. 247 (1981), 48p.
MR 0632164 |
Zbl 0493.53052
[4] Fatibene, L., Francaviglia, M.:
Natural and Gauge Natural Formalism for Classical Field Theories. Kluwer Academic Publishers, Dordrecht-Boston-London, 2003.
MR 2039451 |
Zbl 1138.81303
[5] Janyška, J.:
On the curvature of tensor product connections and covariant differentials. Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 135–143.
MR 2069401 |
Zbl 1051.53017
[8] Kolář, I.:
Some natural operators in differential geometry. Differential Geom. Appl., D. Reidel, 1987, pp. 91–110.
MR 0923346
[9] Kolář, I., Michor, P. W., Slovák, J.:
Natural Operations in Differential Geometry. Springer–Verlag, 1993.
MR 1202431
[10] Kolář, I., Virsik, G.:
Connections in first principal prolongations. Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 163–171.
MR 1463518
[11] Krupka, D., Janyška, J.:
Lectures on Differential Invariants. Folia Fac. Sci. Natur. Univ. Purkynian. Brun. Math., 1990.
MR 1108622
[12] Nijenhuis, A.:
Natural bundles and their general properties. Differential Geom. (1972), 317–334, In honour of K. Yano, Kinokuniya, Tokyo.
MR 0380862 |
Zbl 0246.53018