Previous |  Up |  Next

Article

Keywords:
natural bundle; gauge-natural bundle; natural operator; principal bundle; principal connection
Summary:
We consider a vector bundle $E\rightarrow M$ and the principal bundle $PE$ of frames of $E$. Let $K$ be a principal connection on $PE$ and let $\Lambda $ be a linear connection on $M$. We classify all principal connections on $W^2PE= P^2M\times _M J^2PE$ naturally given by $K$ and $\Lambda $.
References:
[1] Doupovec, M., Mikulski, W. M.: Reduction theorems for principal and classical connections. to appear.
[2] Doupovec, M., Mikulski, W. M.: Holonomic extensions of connections and symmetrization of jets. Rep. Math. Phys. 60 (2007), 299–316. DOI 10.1016/S0034-4877(07)80141-8 | MR 2374824
[3] Eck, D. J.: Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc. 247 (1981), 48p. MR 0632164 | Zbl 0493.53052
[4] Fatibene, L., Francaviglia, M.: Natural and Gauge Natural Formalism for Classical Field Theories. Kluwer Academic Publishers, Dordrecht-Boston-London, 2003. MR 2039451 | Zbl 1138.81303
[5] Janyška, J.: On the curvature of tensor product connections and covariant differentials. Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 135–143. MR 2069401 | Zbl 1051.53017
[6] Janyška, J.: Reduction theorems for general linear connections. Differential Geom. Appl. 20 (2004), 177–196. DOI 10.1016/j.difgeo.2003.10.006 | MR 2038554 | Zbl 1108.53016
[7] Janyška, J.: Higher order valued reduction theorems for classical connections. Cent. Eur. J. Math. 3 (2005), 294–308. DOI 10.2478/BF02479205 | MR 2129910 | Zbl 1114.53018
[8] Kolář, I.: Some natural operators in differential geometry. Differential Geom. Appl., D. Reidel, 1987, pp. 91–110. MR 0923346
[9] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer–Verlag, 1993. MR 1202431
[10] Kolář, I., Virsik, G.: Connections in first principal prolongations. Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 163–171. MR 1463518
[11] Krupka, D., Janyška, J.: Lectures on Differential Invariants. Folia Fac. Sci. Natur. Univ. Purkynian. Brun. Math., 1990. MR 1108622
[12] Nijenhuis, A.: Natural bundles and their general properties. Differential Geom. (1972), 317–334, In honour of K. Yano, Kinokuniya, Tokyo. MR 0380862 | Zbl 0246.53018
[13] Terng, C. L.: Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775–823. DOI 10.2307/2373910 | MR 0509074 | Zbl 0422.58001
Partner of
EuDML logo