[1] Atkinson F. V.:
On some results of Everitt and Giertz. Proc. Royal Soc. Edinburg 71A (1972/3), 151-58.
MR 0326045
[3] Brown R. C, Hinton D. B., Shaw M. F.:
Some separation criteria and inequalities associated with linear second order differential operators. Preprint.
MR 1974789 |
Zbl 0982.34032
[4] Coddington E. A., Levinson N.:
Theory of ordinary differential equations. McGraw-Hill Book Company, New York, 1955.
MR 0069338 |
Zbl 0064.33002
[5] Davies E. B.:
Heat kernels and spectral theory. Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, U.K., 1989.
MR 0990239 |
Zbl 0699.35006
[6] Dunford N., Schwartz J. T:
Linear operators. Part II: Spectral theory. Interscience, New York, 1963.
MR 1009163 |
Zbl 0128.34803
[8] Evans W. D.:
On the essential self-adjointness of powers of Schrödinger-type operators. Proc. Royal Soc. Edinburgh 79A (1977), 61-77.
MR 0481617 |
Zbl 0374.35014
[9] Evans W. D., Zettl A.:
Dirichlet and separation results for Schrödinger-type operators. Proc. Royal Soc. Edinburgh 80A (1978), 151-162.
MR 0529574 |
Zbl 0397.47022
[10] Everitt W. N.:
On the strong limit-point condition of second-order differential expressions. International Conference of Differential Equatioпs. (H. A. Antosiewicz, ed.), Proceedings of an international conference held at the University of Southern California, September 3-7, 1974, Academic Press, New York, 1974, pp. 287-306.
MR 0435497
[12] Everitt W. N., Giertz M.:
Some properties of the domains of certain differential operators. Proc. London Math. Soc. (3) 23 (1971), 301-24.
MR 0289840 |
Zbl 0224.34018
[13] Everitt W. N., Giertz M.:
Some Іnequalities associated with the domains of ordinary differential operators. Math. Z. 126 (1972), 308-328.
DOI 10.1007/BF01110336 |
MR 0303001
[14] Everitt W.N., Giertz M.:
On limit-point and separation criteria for linear differential expressions. Proceedings of the 1972 Equadiff Conference, Brno, 1972, pp. 31-41.
MR 0367354
[15] Everitt W.N., Giertz M.:
Inequalities and separation for certain ordinary differential operators. Proc. London Math. Soc 28 (3) (1974), 352-372.
MR 0342758 |
Zbl 0278.34009
[16] Everitt W. N., Giertz M.:
Inequalities and separation for Schrödinger type operators in $L_2 R^n$. Proc. Royal Soc. Edinburgh 79A (1977), 257-265.
MR 0491381 |
Zbl 0423.35043
[17] Everitt W. N., Giertz M., Weidmann J.:
Sorne remarks on a separation and limit-point criterion of second order ordinary differential expressions. Math. Ann. 200 (1973), 335-346.
DOI 10.1007/BF01428264 |
MR 0326047
[18] Jörgens K. T.:
Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in $C_0^{\infty} (G)$. Math. Scand 15 (1964), 5-17.
DOI 10.7146/math.scand.a-10722 |
MR 0180755
[20] Kalf H., Schmincke U. W., Walter J., Wüst R.:
On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. Proceedings of the 1974 Dundee Symposium. Lecture Notes in Mathematics. vol. 448, Springer-Verlag, Berlin, 1975, pp. 182-226.
MR 0397192
[22] Kato T., Read, T, Zettl A.: The deficiency index problem for powers of differential operators. Lecture Notes in Mathematics, vol. 621, Springer-Verlag, New York, 1977.
[24] Naimark M. A.:
Linear Differential Operators. Part II. Frederick Ungar, New York, 1968.
MR 0262880 |
Zbl 0227.34020
[25] Opic B., Kufner A.:
Hardy-type inequalities. Longman Scientific and Technical, Harlow, Essex, UK, 1990.
MR 1069756 |
Zbl 0698.26007
[26] Read T. T.:
A limit-point criterion for expressions with intermittently positive coefficients. J. London Math. Soc. (2) 15, 271-276.
MR 0437844 |
Zbl 0406.34037