Previous |  Up |  Next

Article

Keywords:
separation; ordinary or partial differential operator; limit-point; essentially selfadjoint
Summary:
We generalize a well-known separation condition of Everitt and Giertz to a class of weighted symmetric partial differential operators defined on domains in $\Bbb R^n$. Also, for symmetric second-order ordinary differential operators we show that $\limsup_{t\to c} (pq')'/q^2=\theta<2$ where $c$ is a singular point guarantees separation of $-(py')'+qy$ on its minimal domain and extend this criterion to the partial differential setting. As a particular example it is shown that $-\Delta y+qy$ is separated on its minimal domain if $q$ is superharmonic. For $n=1$ the criterion is used to give examples of a separation inequality holding on the domain of the minimal operator in the limit-circle case.
References:
[1] Atkinson F. V.: On some results of Everitt and Giertz. Proc. Royal Soc. Edinburg 71A (1972/3), 151-58. MR 0326045
[2] Brown R. C, Hinton D. B.: Suffîcient conditions for weighted inequalìties of sum form. J. Math. Anal. Appl. 112 (1985), 563-578. DOI 10.1016/0022-247X(85)90263-X | MR 0813620 | Zbl 0587.26011
[3] Brown R. C, Hinton D. B., Shaw M. F.: Some separation criteria and inequalities associated with linear second order differential operators. Preprint. MR 1974789 | Zbl 0982.34032
[4] Coddington E. A., Levinson N.: Theory of ordinary differential equations. McGraw-Hill Book Company, New York, 1955. MR 0069338 | Zbl 0064.33002
[5] Davies E. B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, U.K., 1989. MR 0990239 | Zbl 0699.35006
[6] Dunford N., Schwartz J. T: Linear operators. Part II: Spectral theory. Interscience, New York, 1963. MR 1009163 | Zbl 0128.34803
[7] Eastham M. S. P., Evans W. D., McLeod J. B.: The essential self-adjointness of Schrödinger-type operators. Arch. Rational Mech. Anal. 60 (1976), 185-204. DOI 10.1007/BF00250679 | MR 0417564 | Zbl 0326.35018
[8] Evans W. D.: On the essential self-adjointness of powers of Schrödinger-type operators. Proc. Royal Soc. Edinburgh 79A (1977), 61-77. MR 0481617 | Zbl 0374.35014
[9] Evans W. D., Zettl A.: Dirichlet and separation results for Schrödinger-type operators. Proc. Royal Soc. Edinburgh 80A (1978), 151-162. MR 0529574 | Zbl 0397.47022
[10] Everitt W. N.: On the strong limit-point condition of second-order differential expressions. International Conference of Differential Equatioпs. (H. A. Antosiewicz, ed.), Proceedings of an international conference held at the University of Southern California, September 3-7, 1974, Academic Press, New York, 1974, pp. 287-306. MR 0435497
[11] Everitt W.N.: A note on the Dirichlet conditions for second order differential expressions. Can. J. Math. 28 (2) (1976), 312-320. DOI 10.4153/CJM-1976-033-3 | MR 0430391
[12] Everitt W. N., Giertz M.: Some properties of the domains of certain differential operators. Proc. London Math. Soc. (3) 23 (1971), 301-24. MR 0289840 | Zbl 0224.34018
[13] Everitt W. N., Giertz M.: Some Іnequalities associated with the domains of ordinary differential operators. Math. Z. 126 (1972), 308-328. DOI 10.1007/BF01110336 | MR 0303001
[14] Everitt W.N., Giertz M.: On limit-point and separation criteria for linear differential expressions. Proceedings of the 1972 Equadiff Conference, Brno, 1972, pp. 31-41. MR 0367354
[15] Everitt W.N., Giertz M.: Inequalities and separation for certain ordinary differential operators. Proc. London Math. Soc 28 (3) (1974), 352-372. MR 0342758 | Zbl 0278.34009
[16] Everitt W. N., Giertz M.: Inequalities and separation for Schrödinger type operators in $L_2 R^n$. Proc. Royal Soc. Edinburgh 79A (1977), 257-265. MR 0491381 | Zbl 0423.35043
[17] Everitt W. N., Giertz M., Weidmann J.: Sorne remarks on a separation and limit-point criterion of second order ordinary differential expressions. Math. Ann. 200 (1973), 335-346. DOI 10.1007/BF01428264 | MR 0326047
[18] Jörgens K. T.: Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in $C_0^{\infty} (G)$. Math. Scand 15 (1964), 5-17. DOI 10.7146/math.scand.a-10722 | MR 0180755
[19] Kalf H.: Self-adjointness for strongly singular potentials with a $-|x|^2$ fall-off at infinity. Math. Z. 133 (1973), 249-255. DOI 10.1007/BF01238041 | MR 0328308 | Zbl 0266.35018
[20] Kalf H., Schmincke U. W., Walter J., Wüst R.: On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. Proceedings of the 1974 Dundee Symposium. Lecture Notes in Mathematics. vol. 448, Springer-Verlag, Berlin, 1975, pp. 182-226. MR 0397192
[21] Kato T.: Schrödinger operators with singular potentials. Israel J. Math., 135-148. MR 0333833 | Zbl 0246.35025
[22] Kato T., Read, T, Zettl A.: The deficiency index problem for powers of differential operators. Lecture Notes in Mathematics, vol. 621, Springer-Verlag, New York, 1977.
[23] Knowles I.: On essential self-adjointness for Schrödinger operators with wildly oscillationg potentials. J. Math. Anal. Appl. 66 (1978), 574-585. DOI 10.1016/0022-247X(78)90254-8 | MR 0517747
[24] Naimark M. A.: Linear Differential Operators. Part II. Frederick Ungar, New York, 1968. MR 0262880 | Zbl 0227.34020
[25] Opic B., Kufner A.: Hardy-type inequalities. Longman Scientific and Technical, Harlow, Essex, UK, 1990. MR 1069756 | Zbl 0698.26007
[26] Read T. T.: A limit-point criterion for expressions with intermittently positive coefficients. J. London Math. Soc. (2) 15, 271-276. MR 0437844 | Zbl 0406.34037
[27] Simon B.: Essential self-adjointness of Schrödinger operators with positive potentials. Math. Ann. 201 (1973), 211-220. DOI 10.1007/BF01427943 | MR 0337215 | Zbl 0234.47027
Partner of
EuDML logo