[2] Berkovits J., Mustonen V.:
On topological degree for mappings of monotone type. Nonlinear Anal. TMA 10 (1986), 1373-1383.
MR 0869546
[7] Gossez J.-P.:
Orlicz spaces and nonlinear elliptic boundary value problems. Nonlinear Analysis, Function Spaces and Applications, Teubner-Texte zur Mathematik. 1979, pp. 59-94.
MR 0578910
[10] Hess P.:
On nonlinear mappings of monotone type with respect to two Banach spaces. J. Math. Pures Appl. 52 (1973), 13-26.
MR 0636418 |
Zbl 0222.47019
[12] Kittilä A.:
On the topological degree for a ciass of mappings of monotone type and applications to strongly nonlinear elliptic problems. Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 91 (1994).
MR 1263099
[13] Krasnoseľskii M., Rutickii J.:
Convex functions and Orlicz spaces. P. Noordhoff Ltd., Groningen, 1961.
MR 0126722
[14] Kufner A., John O., Fučík S.:
Function spaces. Academia, Praha, 1977.
MR 0482102
[16] Landes R., Mustonen V.:
On pseudomonotone operators and nonlinear noncoercive variational problems on unbounded domains. Math. Ann. 248 (1980), 241-246.
DOI 10.1007/BF01420527 |
MR 0575940
[17] Landes R., Mustonen V.:
Pseudo-monotone mappings in Orlicz-Sobolev spaces and nonlinear boundary value problem on unbounded domains. J. Math. Anal. Appl. 88 (1982), 25-36.
DOI 10.1016/0022-247X(82)90173-1 |
MR 0661399
[18] Leray J., Lions J. L.:
Quelques résultats de Višik sur des problémes elliptiques non linéaires par les méthodes de Minty-Browder. Bul. Soc. Math. France 93 (1965), 97-107.
DOI 10.24033/bsmf.1617 |
MR 0194733
[20] Tienari M.:
A degree theory for a class of mappings of monotone type in Orlicz-Sobolev spaces. Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 97 (1994).
MR 2714883 |
Zbl 0821.47044