Previous |  Up |  Next

Article

Keywords:
boundedness of eigenfunction; weighted Sobolev space; Schauder fixed point theorem; degenerated quasilinear partial differential equations; weak solutions; eigenvalue problems; boundedness of the solution
Summary:
We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem \align-\operatorname{div}(a(x,u)|\nablau|^{p-2}\nabla u) = &\lambda b(x,u)|u|^{p-2}u \quad\text{ in } \Omega, u = &0 \hskip2cm\text{ on } \partial\Omega, \endalign where $\Omega$ is a bounded domain, $p>1$ is a real number and $a(x,u)$, $b(x,u)$ satisfy appropriate growth conditions. Moreover, the coefficient $a(x,u)$ contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in $L^\infty(\Omega)$. The main tool is the investigation of the associated homogeneous eigenvalue problem and an application of the Schauder fixed point theorem.
References:
[1] R. A. Adams: Sobolev Spaces. Academic Press, Inc., New York, 1975. MR 0450957 | Zbl 0314.46030
[2] A. Anane: Simplicité et isolation de la premiére valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725-728. MR 0920052 | Zbl 0633.35061
[3] G. Barles: Remarks on uniqueness results of the first eigenvalue of the p-Laplacian. Ann. Fac. des Sc. de Toulouse IX (1988), no. 1, 65-75. MR 0971814 | Zbl 0621.35068
[4] T. Bhattacharya: Radial symmetry of the first eigenfunction for the p-Laplacian in the ball. Proc. Amer. Math Society 104 (1988), 169-174. MR 0958061 | Zbl 0673.35083
[5] L. Boccardo: Positive eigenfunctions for a class of quasi-linear operators. Bollettino U. M. I. (5) 18-B (1981), 951-959. MR 0641748 | Zbl 0496.47051
[6] P. Drábek M. Kučera: Generalized eigenvalue and bifurcations of second order boundary value problems with jumping nonlinearities. Bull. Austral. Math. Society 37(1988), 179-187. MR 0930787
[7] P. Drábek A. Kufner F. Nicolosi: On the solvability of degenerated quasilinear elliptic equations of higher order. J. Differential Equations 109 (1994), 325-347. DOI 10.1006/jdeq.1994.1053 | MR 1273306
[8] S. Fučík A. Kufner: Nonlinear Differential Equations. Elsevier, The Netherlands, 1980. MR 0558764
[9] J. García Azorero I. Peral Alonso: Existence and non-uniqueness for the p-Laplacian: Non-linear eigenvalues. Comm. Partial Differential Equations 12 (1987), 1389-1430. MR 0912211
[10] A. Kufner O. John S. Fučík: Function Spaces. Academia, Prague, 1977. MR 0482102
[11] A. Kufner A. M. Sändig: Some Applications of Weighted Sobolev Spaces. Teubner, Band 100, Leipzig, 1987. MR 0926688
[12] P. Lindqvist: On the equation $div(| \nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0$. Proc. Amer. Math. Society 109 (1990), 157-164. MR 1007505 | Zbl 0714.35029
[13] M. K. V. Murthy G. Stampacchia: Boundary value problems for some degenerate elliptic operators. Annali di Matematica (4) 80 (1968), 1-122. MR 0249828
[14] M. Otani T. Teshima: The first eigenvalue of some quasilinear elliptic equations. Proc. Japan Academy 64, ser. A (1988), 8-10. MR 0953752
[15] M. M. Vainberg: Variational Methods for the Study of Nonlinear Operators. Holden-Day, Inc. San Francisco, 1964. MR 0176364 | Zbl 0122.35501
Partner of
EuDML logo