[2] A. Anane:
Simplicité et isolation de la premiére valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725-728.
MR 0920052 |
Zbl 0633.35061
[3] G. Barles:
Remarks on uniqueness results of the first eigenvalue of the p-Laplacian. Ann. Fac. des Sc. de Toulouse IX (1988), no. 1, 65-75.
MR 0971814 |
Zbl 0621.35068
[4] T. Bhattacharya:
Radial symmetry of the first eigenfunction for the p-Laplacian in the ball. Proc. Amer. Math Society 104 (1988), 169-174.
MR 0958061 |
Zbl 0673.35083
[5] L. Boccardo:
Positive eigenfunctions for a class of quasi-linear operators. Bollettino U. M. I. (5) 18-B (1981), 951-959.
MR 0641748 |
Zbl 0496.47051
[6] P. Drábek M. Kučera:
Generalized eigenvalue and bifurcations of second order boundary value problems with jumping nonlinearities. Bull. Austral. Math. Society 37(1988), 179-187.
MR 0930787
[7] P. Drábek A. Kufner F. Nicolosi:
On the solvability of degenerated quasilinear elliptic equations of higher order. J. Differential Equations 109 (1994), 325-347.
DOI 10.1006/jdeq.1994.1053 |
MR 1273306
[8] S. Fučík A. Kufner:
Nonlinear Differential Equations. Elsevier, The Netherlands, 1980.
MR 0558764
[9] J. García Azorero I. Peral Alonso:
Existence and non-uniqueness for the p-Laplacian: Non-linear eigenvalues. Comm. Partial Differential Equations 12 (1987), 1389-1430.
MR 0912211
[10] A. Kufner O. John S. Fučík:
Function Spaces. Academia, Prague, 1977.
MR 0482102
[11] A. Kufner A. M. Sändig:
Some Applications of Weighted Sobolev Spaces. Teubner, Band 100, Leipzig, 1987.
MR 0926688
[12] P. Lindqvist:
On the equation $div(| \nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0$. Proc. Amer. Math. Society 109 (1990), 157-164.
MR 1007505 |
Zbl 0714.35029
[13] M. K. V. Murthy G. Stampacchia:
Boundary value problems for some degenerate elliptic operators. Annali di Matematica (4) 80 (1968), 1-122.
MR 0249828
[14] M. Otani T. Teshima:
The first eigenvalue of some quasilinear elliptic equations. Proc. Japan Academy 64, ser. A (1988), 8-10.
MR 0953752
[15] M. M. Vainberg:
Variational Methods for the Study of Nonlinear Operators. Holden-Day, Inc. San Francisco, 1964.
MR 0176364 |
Zbl 0122.35501