Previous |  Up |  Next

Article

Keywords:
inequalities; sums; series; inequalities for series and sums; Holder's inequality
Summary:
In this paper we refine an inequality for infinite series due to Astala, Gehring and Hayman, and sharpen and extend a Holder-type inequality due to Daykin and Eliezer.
References:
[1] K. Astala, F. W. Gehring: Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood. Michigan Math. J. 32 (1985), 99-107. DOI 10.1307/mmj/1029003136 | MR 0777305 | Zbl 0574.30027
[2] G. Bennett: Some elementary inequalities, II. Quart. J. Math. Oxford 39 (1988), no. 2, 385-400. DOI 10.1093/qmath/39.4.385 | MR 0975904 | Zbl 0687.26007
[3] D. E. Daykin, C. J. Eliezer: Generalization of Holder's and Minkowski's inequalities. Proc. Camb. Phil. Soc. 64 (1968), 1023-1027. DOI 10.1017/S0305004100043747 | MR 0239027
[4] W. K. Hayman: A lemma in the theory of series due to Astala and Gehring. Analysis 6 (1986), 111-114. MR 0832739 | Zbl 0587.30026
[5] D. S. Mitrinović: Analytic Inequalities. Springer, New York, 1970. MR 0274686
[6] D. S. Mitrinović J. E. Pečarić, A. M. Fink: Classical and New Inequalities in Analysis. Kluwer, Dordrecht, 1993. MR 1220224
Partner of
EuDML logo