Article
Keywords:
anholonomic web; web; manifold; connection
Summary:
An anholonomic $(n+1)$-web of dimension $r$ is considered as an $(n+1)$-tuple of $r$-dimensional distributions in general position. We investigate a family of $(1,1)$-tensor fields (projectors and nilpotents associated with a web in a natural way) which will be used for characterization of all linear connections on a manifold preserving the given web.
References:
[Ak] M. A. Akivis:
Three-webs of multidimensional surfaces. Trudy Geom. Sem. 2 (1969), 7-31. (In Russian.)
MR 0254760
[A&S] M. A. Akivis A. M. Shelekhov:
Geometry and Algebra of Multidimensional Three-Webs. Kluwer Acad. Publishers, Dordrecht, 1992.
MR 1196908
[Ch] S. S. Chern:
Eine Invariantentheorie der Dreigewebe aus r-dimensionalen Mannigfaltigkeiten im $R_{2r}$. Abh. Math. Sem. Univ. Hamburg 11 (1936), 333-358.
DOI 10.1007/BF02940731
[G] V. V. Goldberg:
Theory of Multicodimensional (n+1)-Webs. Kluwer Acad. Publishers, Dordrecht, 1990.
MR 0998774
[Ki] M. Kikkawa:
Canonical connections of homogeneous Lie loops and 3-webs. Mem. Fac. Sci. Shimane Univ. 19 (1985), 37-55.
MR 0841222 |
Zbl 0588.53014
[Sh] I. G. Shandra:
On isotranslated $n \pi$-structure and connections preserving a non-holonomic (n + 1)-coweb. Webs and Quasigroups. Tver State University, Tversk, 1995, pp. 60-66.
MR 1413340
[Va2] A. Vanžurová:
On torsion of a 3-web. Math. Bohem. 120 (1995), 387-392.
MR 1415086
[Va3] A. Vanžurová:
Projectors of a 3-web. Proc. Conf. Dif. Geom. and Appl. Masaryk University, Brno, 1996, pp. 329-335.
MR 1406353
[Va4] A. Vanžurová:
Connections for non-holonomic 3-webs. Rend. Circ. Mat. Palermo 46 (1997), 169-176.
MR 1469034