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TENSOR APPROACH TO MULTIDIMENSIONAL WEBS
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Abstract. An anholonomic (n + 1)-web of dimension r is considered as an (n + 1)-tuple
of r-dimensional distributions in general position. We investigate a family of (1,1)-tensor
fields (projectors and nilpotents associated with a web in a natural way) which will be used
for characterization of all linear connections on a manifold preserving the given web.
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0. INTRODUCTION

A d-web on a manifold M is usually introduced as an ordered family of d differen-
tiable foliations of the same dimension which satisfy additional conditions (the tan-
gent distributions are in general position in TM). The theory of (n+ 1)-webs of codi-
mension » on a smooth nr-dimensional manifold M was summarized by V. V. Gold-
berg [G]. The reached results were obtained by applying the theory of systems of
differential forms and Cartan methods. A more general and in a way dual case was
investigated by I. G.Shandra. His paper [Sh] is devoted to non-holonomic (n + 1)-
webs of dimension r on M, (the web distributions are non-holonomic in general),
and to connections preserving web distributions. A web is substituted by a family of
1-forms (affinors) satisfying a set of conditions. This approach was previously used in
[Ng] and [Va] where invariant tensor fields associated with a 3-wel were investigated.

Our aim is to use a family of tensor fields H? forming a {H?}-structure, in-
stead of web foliations or tanget distributions, to characterize r-dimensional (or
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r-codimensional) webs on manifolds and web-preserving connections. In many con-
siderations (e.g. the existence of canonical connections) the role of the fields H is
essential but the integrability conditions are not used. So we will introduce the defi-
nition of a web in a more general setting. Distinguished web-preserving connections,
the canonical y-connections, can play a similar role by characterization of the most
important classes of (n + 1)-webs as the so called Chern connection by classification
of 3-webs [Ki, Ch, Ak, G].

The existence of a { H#}-structure on a manifold M is equivalent with the existence
of a Gl,-structure on M. A {HF}-structure induces both an r-dimensional and an
r-codimensional (n + 1)-webs.

Note that in general, it is possible to consider d-webs of dimension r on an m-
dimensional manifold where m: is not a multiple of », or even webs consisting of
foliations of different dimensions. By technical reasons, it is hardly possible to expect
a nice tensor theory in the general case although special examples are known since
G. Bol, and many papers of V. V. Goldberg and others are devoted to this subject.
Note that if the number of foliations is not “sufficiently high” the local situation is
trivial (a given web is equivalent to a web formed by parallel plane surfaces). On the
other hand if a web consists of “too many” foliations it can be investigated through
its sub-webs. In the case of an r-dimensional wel» on an nr-dimensional manifold, it
is convenient to assume d =n + 1.

We will suppose that manifolds, bundles, vector and tensor fields under conside-
ration are smooth (of the class C°°). M will denote a manifold, TM its tangent
bundle, £(M) denotes the set of all vector fields on M.

1. TENSOR FIELDS ASSOCIATED WITIH (n + 1)-WEBS OF DIMENSION 7

Definition 1.1.  An anholonomic (n + 1)-web of dimension r (or of codimen-
sion 7, respectively) on a C*-nr-manifold M is a family W = (Do, Dy, ..., Dy) of
distributions of dimension (codimension) r which are in general position.!

Web distributions Dy, a = 0,...,n are r-dimensional subbundles D, — M of the
tangent bundle TM — M. If all subbundles Dy,...,D, are integrable (that is, if
X,Y € Dg then [X,Y] € D,) we say that W is holonomic.

As morphisms, we take diffcomorphisms f: M — M’ which preserve web distri- *
butions, Tf(Dy) = D'

! In general position means that at any point, the intersection Do 1 Dpg is trivial for B # a.
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Any ordered? anholonomic (1 + 1)-web W = (Dq, ..., D,) of dimension 7 is in a
correspondence with a family of (1, 1)-tensor fields {H?; a,4 € 1,...,n} which will
be described in the following.

Any n-tuple of web distributions forms an almost product structure on My,. Let
us fix an almost product structure

1.1) [Dy,...,D,).

Denote by P, the corresponding projectors where o = 1,...,n. Then TM =3 D,
Py :TM = Dg, PoX = X, for any vector field X € X(M). These projectors satisfy
im P, = D,

(1.2) P2=Py, PuPp=0, Y Po=id (a#B, a.f=1,...,n).

Let us choose a fixed basis

(1.3) x4, X5

of the distribution Dy, and let us decompose base vector fields with respect to the
almost product structure (1.1):

(1.4) P(XE) = (X{), = XL € Dq (a=1l...,m, i=1,..7)

where we write X! instead of (X{), for the sake of simplicity. A correspondence
Xiw Xé,vcv # B,i=1,...,7 can be extended by linearity into a bundle isomor-
phism

B? . Dy — Dg.

Evidently, the definition of the above mappings is independent of the choice of a
basis in Dg. With respect to composition, these bundle isomorphisms satisfy the
equalities

BjoBf =B, BjoBS=idp,, BloBS=0 fork#8,
PyoBf=B8 P.oBf=0 for k£8#a.

Remark 1.1.  In particular, if n = 2 the isomorphisms B}, B} can be extended
by linearity to an involutory isomorphism B of the whole tangent space at any point,

B:TM—TM, VXe€X(M) BX=B!PX+BlpX, BX=X.

This is not the case for n > 3.

? By ordered we mean here “with a fixed order of web distributions”.
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Now let us introduce (1, 1)-tensor fields H? : TM — Dg by
HP=BfoD, (B#a, a,fe{l,...,n}).

It can be verified that the following equalities are satisfied for o, 8,7, € {1,...,n}:

(1.5) HioHP =P, B#a,

(1.6) HioHI=Hl ~y#B#a#n,

(1.7) HYoHP =0, ~#c#pB#a

(1.8) HS’ =0, B#a

(1.9) HloP,=HS B#a, .
(1.10) HjoPa=0. v#B8#«

(1.11) H?\D,=B? imH?=Ds B+#a.

The kernel of the endomorphism H? is ker HS = > Dy, v runs over all indexis

(L....a

n} where the symbol G means that a is omitted. Let us use the notation
H) =P, a=1,..., 7.

Then the above conditions (1.5)-(1.10). (1.2) can be rewritten in a shorter form?

(1.12) S Hy=id,  HYoHZ =68 HI (a,8v.n€{l...,n})

where 6% is the Kronecker symbol.

Definition 1.2.  The family of (1, 1)-tensor fields satisfying (1.12) will be called
a {HEY 5, -structure of dimension 1 on M.

Tensor fields HY, 3 # a are nilpotent by (1.8). Each of them determines an alnost
tangent structure on M,, and satisfies

Ds=imH? Cker HY = E D,. ye{l,...,a...,n}.
Y
Let us define Py by the formula

(1.13) P=15"HE
@8

3 A family of 1-forms {113},,»,7:1',”_,1 on M satisfving (1.12) is called an isotranslated
nm-structure in [Sh].
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Then Py is a projector onto Do. In fact,

=% S HH =% Y ofH]

@, d.ny a3y
(1.14) n
-3 ()= S =r,
B=1 oy oy

and im Py = Dy since im Po|D-, = Dy for any v € {1,...n}. In fact, using notation
introduced in (1.3), (1.4) we verify that
Po(X)) = LS HIXI = LS THIP,X =1y HEX]
o8 a8 6

§<H3xg‘ +y H;”X&) = 1—(\y +y Xf,) = 1x{ € Dy.

BFEy B#y

I

Therefore Py: TM — Dgy and Iy | D = id.

2. THE ANHOLONOMIC (n + 1)-WEB CORRESPONDING TO A {H£}-STRUCTURE OF
DIMENISON 7

On the other hand, a family of (1, 1)-tensor fields (1.12) defines an anholonomic
(n + 1)-web of dimension r (or of codimension r, respectively). In fact, let {H?} be
a system of (1, 1)-tensor fields satisfying (1.12) on M. Then {HS}"_, is a system of
mutually orthogonal projectors:

(HSP =Hy, HSHS =0 (8#a).
Let us verify that the system yiclds an almost product structure
[Dy =im Hll, ....D,=mH}].
Assume X € DanNDg (B#a. a,f=1,...,n). Then X = UgX = Hg(Hg‘)X = O
So couples of different distributions have trivial intersections. Moreover, TM =

im HS. Further, {5}, B # « is a family of almost tangent structures H2: TM —
Dy on M,

(HY? =0,  HJHZ=H). HIH]=0 (x#8)

and the restriction H? | D,: D, — Dy is a bundle isomorphism. In fact, let X, €
D,. Then HZX = Hng.\' € Dy. Suppose HZX = 0 for some X € D,. Then
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X =H3X =H§HEX = Hg0 = 0 which proves that ker(H? | Da) is trivial. Denote
these bundle isomorphisms by Bf = HZ | D,, and the rank r = rk H? =tk BS. Tt
follows dim M = nr where 7 is the common dimension of all D, a = 1,...,n. Now
let us introduce

(2.1) HY =L HE.
a8

Then Hg is a projector which can be verified by evaluation similar to those in (1.14).
This projector determines an r-dimensional distribution, Dy = im HJ. It can be
verified that vk H§ = dim Do = 7. In fact, let us start from any basis (X1) of D.;

HY X% = %ﬁz X5 U X €D, X =3, AiX§ we abtain equivalences
=1
HX =04= 35 AXj=0e> A;=0
i B

which prove that H§X = 0 for X € D, if and only if X = 0. Thus HJ|D, are
isomorphisms for v = 1,...,n. Using decomposition of any basis X§ of Dy with
respect to the almost product structure [Dy,...,D,} we obtain isomorphisms B§
given by Bg: X = H2XZ, and B = (Bg)~L.

Proposition 2.1. Let {HZ} be a system of (1,1)-tensor fields satisfying (1.12)
on an nr-dimensional manifold M. In the above notation, let D, = iInHS, « =

@)

. Then (Do, Dy, ..., D,) is an anholonomic (n + 1)-web of dimenison r on

Proof. It was verified above that dim Dy =1k HS =r for o =0,1,...,n and
that D,NDg=0fora# B,a.4=1,....n. Nowlet X € DgN Dy, a € {1,...,n}.

Then X = HgN = HYHHS X = HY (L Y HY(HAX)) = 2 Y 6065H) = LHOX,
ERG By

that is, X = %X which proves Do N D, = 0. So the distributions Do,..., D, of

dimension » are in general position. [m}

Remark 2.1.  Similarly. we can prove that a {H?}-structure on M gives rise
also to an anholonomic (n + 1)-web of codimension r formed by distributions in
general position Dy =ker H. o =0,1....,n,

Dg = ker HS :ker(1+ ZH[,‘), Py=1-H)= }7((17 -nI- ZHS‘)
J pia

Dy=kerHY =3 (1-37)D,, Pa=3"(1-8)Py a=1,...,n
T b
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where P, denote the corresponding projectors. We can say that given an (n+1)-
web (D,) of dimension # (or (Dy) of codimesion ) the normal bundles form a web
(TM/D4) of codimension r (respectively a web (TA/Dg) of dimension 7).

3. THE PRINCIPAL BUNDLE OF WEB-ADAPTED FRAMES

Let W denote an anholonomic (n + 1)-web of dimension 7.

Definition 3.1. A frame (X{[...|X}) is called adapied with respect to an

n

almost product structure [Dy,....Dy] if Xi € Dy fori=1,....r, a € {1,...,n}.

Definition 3.2. A frame will be called W-adapted, or adapted with respect to
an anholonomic web W = (Dg, Dy, ..., D, ) if it is adapted to (1.1) and is “normed”
in such a way that tensor fields

(3.1) X=>3"XL  (i=1..r)
a=1
form a basis of Dy.

The family WAS of all W-adapted frames constitutes a G-structure on M. Its

structure group

A 0 0
GLOLR) X . 0 A A€GLR)
n-times O O . ‘4

(the diagonal product of GL(r. R) n-times) is a subgroup of GL(nr, R) isomorphic
with GL(r.R).

Definition 3.3. A web W will be called regular if the corresponding G-structure
WM of web-adapted frames is integrable (=locally flat).

Definition 3.4. A frame is adapted with respect to an {U{f}’;ﬁ:l-structurc if

(3.2) HEXE i=1,...,r  (B#a, pac{l...,n}).

It can be easily seen that a frame is W-adapted iff it is adapted to the coire-
sponding {H2}-structure. So all { Hf}-adapted frames form a GL(r, R)-structure on
M.

231



With respect to an {H?}-adapted frame, the components of the tensor H?
are (HE)Y = 656967 and the matrix representation of the endomorphism (H8),:
TeM — (Dp)e, © € M is?

0 0 0
H:={0 I 0
00 0

where the (7 x 7)-identity matrix I, stands at the position (. 3).

4. CONNECTIONS
Let M be a manifold endowed with an anholonomic web W, let P, denote the
corresponding projectors and HE the adjoined (1, 1)-tensor ficlds.
Definition 4.1.  We say that a lincar connection ¥V on M is W-preserving if all
projectors are covariantly constant,

VP, =0. a=0,1....,n.

All W-preserving linear connections will be described in Theorem 4.2.
Remark 4.1. A distribution D on M is called parallel with respect to a
connection V if the following condition is satisfied:
VX, YeX(M) (YeD=VxYeD)
If D is both integrable and parallel to a connection V then ¥ can be reduced to the
integral submanifolds of D.

It can be easily verified that a connection V is web-preserving if and only if all web-
distributions D, o = 0,1,...,n are parallel with respect to V. The web-preserving
connections are exactly the lincar connections on M reducible to the subbundle WM
of adapted frames.

In a similar way we introduce the following definition.

Definition 4.2. A connection V preserves an {H?}-structure if
VHE =0 for all pairs «,8 € {1,...n}.
The above condition can be written as

(4.1) Ya, VX, Y €X(M) 0=VHA(X,Y)=VxHIY - H?VxY.

# The notation corresponds to the right action Hg(u) =u- Hg, weTeM.
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Proposition 4.1. A linear connection V on M is {HS}‘M‘eserving if and only
if V is W-preserving.

VxHSY = VyY.

HES HYVxHY =
afB ~

Proof. LetY € D,, a € {1,...,n}. Then HIYxY
Now let Y € Do. Then Y = 2 3" HFY, and H{VxY = H
a8

B %VX(HEH;"Y) = VxHJY = VxY.

Yo
On the other hand, let VP, = 0 for o = 0,1,...,n. Let us choose an adapted
frame (X{|...|X}), X§ =3 X!. Then VxX§ =Y Vx X Where VxX§ € Do and

nd v .
Vx X% € D, by the assumptions. That is, (Vx X{|...|VxX,) is also adapted and
we obtain BEVfo, = VxXj = VxBfX. Consequently, VBSP, = VHE =0,
y=1,...n. a

Proposition 4.2. A linear connection preserves an {HS }-structure if and only
if the following formula holds:

(4.2) vae{l,...,n} YX,Y € X(M) VxY = ZH;; Vx HEY.

@

Proof. Let V preserve the structure. Then HS VxY = Vx HAY , which follows
by (4.1). We evaluate

Vx¥ =S HIVxY =3 HGHEVxY = HgVx HYY, Be{l,...n}).

« a

On the other hand, let the condition (4.2) be satisfied for all 3. Then we can write
for arbitrary indices 8, v, &

(4.3) HYVxY = Zﬁgngvxﬂgy = H]VxHY.

o

However,

(44)  HIVxHIY = HSVx(SUHPY)=) H§VxHSH!Y = VxH]Y.
P o

Taking into account (4.3), (4.4) we obtain VH) = 0. [m]

An arbitrary linear connection I' on a web-manifold yields a web-preserving con-
nection as follows [Sh].
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Proposition 4.3. Let T' be a linear connection on a manifold M., endowed
with an {HE}-structure of dimension r. Then for any & € {1,...,n} the following
formula defines an {Hf}fpreserving connection V = V(T'; k):

VxY =3 HEDx(HZY).

a=1

Proof. By standard evaluation, it can be checked that V is a connection.
Moreover, it satisfies the condition (4.2). [}

The so called Chern canonical connection [Ch, Kij on a three-web manifold admits
the following generalization to our case. Denote by v a mapping satisfying

(4.5) v:{l,...,n} = {1,...,n}, y(@)e{l,...,&,...,n}.

There exist (n — 1)* such mappings. Now let M be a manifold endowed with an
anholonomic (n + 1)-web of dimension r. For any function ~y described above, we

Y
can construct a connection V which parallelizes all distributions Dy, ..., D, and is
unique in the following sense [Sh].

Theorem 4.1. Let M be a manifold endowed with an anholonomic (n + 1)-web
of dimension r, W = (Do, ....Dy), let {Hg}gﬁ:L be the corresponding structure,
and let v: {1,...,n} = {1,...,n}, @ = (@) be a function such that v(a) # a.

ol
Then there exists a unique connection V = V which is H8-preserving and its torsion
tensor T satisfies

(4.6.) B THIXHY) =0 (a=1,....n).

This connection is given by the formula

(4.7) VXY =3 HE HSX HY Y.
.8

The proof of the theorem was partially and very briefly sketched in [Sh] (with
some indices missing on page 65). Since the theorem is important for the theory let
us present the proof with all details here.

Proof. First let us prove that if such a connection exists it is necessarily
given by the formula (4.7). So let V satisfy the above conditions. Then VxY =
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STHEVXHY wjere 7 is a fixed index (y € {1,...,n}). By the assumption (4.6)

v:e obtain
o=;( S HVhg xHIHY = 3 B3V gy HYHEX — [HIX, HY])
= H;V,Z:XHJY - H;VH;YH;’IKJL':X — H)[HEX, HYY).
Since HQVH;:XH;’Y = (H))’VuyxY = HIV s xY we obtain
(4.8) HVuyxY = HIHSX, HIY].
Now
VY = Vg, HM(}: Hgy) =Y HOVuoxY
8 «B

=S HPHJH}Vy.xY =Y HSH]Vy, xH}Y.
a,f .8

(4.9)

Substituting H,;'(”)Y instead of ¥ to the formula (4.9) and v(«) instead od v in the
above formula for the connection (4.8) we obtain

VxY =3 HE G HIS X, S HY Y = ST HE [H X, HY Y.
o8 el

Now let us verify that the formula (4.7) defines a linear connection on M. Linearity
is obvious. An evaluation shows that

VyxY = fVxY =S HE S(HFOY f) - (HEX)
a,8

= fvxY =Y (H v !

v(a)

HoX = fUxY

and
VxfY = fOxY + S (HIX ) HY L HYOY)
o8
= fVxY + (X )Y.

It remains to prove (4.6). Let us verify (4.2). Let x € {1,...,n}. Then

SoHrvxHyY = 3 HEHE (HOX HHEY]
" a8

— 13
- H‘r(ﬂ)

[HS X H) Y] = VY.

o
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Now '

HV(")T(H:X, H7(’°)y Z H'v('é)Hﬂ

v(x) (=) (k) T v(e)

62 Hx X, 53 1Y)y

— ZHw HAHE( )[57(H)H7(n)y H““)X]

- H"((:))[H“X HiNY]=0.

a

Y

The linear connection V introduced by the formula (4.7) will be called the cano-
nical v-connection for W.

Let us evaluate components of the y-connection with respect to a web- adapted
frame (X%), @ =1,...,m,i=1,...,r. Let g, u be fixed, XJ ED“,XQ € D,. Let us
denote VX’,‘X Z, NFZJZ,':)P and (X5, X5 =% -ff:,f( YXZ. According to the
formula (4.7) we obtain

Dk — gk k()
ug i (590117(/') i

Many ivestigations in web geometry are devoted to the problem of local equivalence
of webs. The canonical y-connection on a web manifold can play an important role
in the classification of webs.

Theorem 4.2. [Sh] The following conditions are equivalent:

(1) The (n + 1)-web W is regular.

(2) There is an atlas on M such that the corresponding holonomic frames (#)
are web-adapted.

(3) The G-structure of all { H8}-adapted frames is locally flat.

(4) For any canonical linear v-connection, the torsion and curvature tensors are

i Y
equal to zero, T =R = 0.

Remark 4.1.  According to (3) any regular web is holonomic, the coordinate
vector fields {0—2—,1 =1,...,r} form a basis of the distribution Dg, a =1,...,n. It
is well known that an (n + 1)-web is regular if and only if it is locally diffeomorphic
to a web formed by n + 1 foliations of parallel r-dimensional affine subspaces (in
general position) in R™".

Let ¥V, ¥V be a couple of W-preserving connections. Then the difference tensor
S =V -V satisfies

(4.10) S(X,HPY) = HES(X,Y),
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which follows by the evaluation
(4.11) 0=VHP(X;Y)=VH(X;Y)+ S(X,HEY) - H3S(X,Y).

For any fixed X € X(M), let us introduce a vector 1-form on M by &X =
S(X,-):Y = S(X,Y). Then &: X + X yields a homomorphism X, — (3X),,
T, M — End(T, M) at any point * € M. According to (4.10), #X commutes with
all mappings HS. For any & € {1,...,n} and X € T, M the restriction &, X, =
X, |(Dy). € End(Dy), is an endomorphism of (Dk):. Moreover, S(X,Y) =
S HH(®X)(HLY). Infact, ®: TM — End(TM) is a vector bundle morphism and
scixmilarly, $,.: TM — End(Dy) is a bundle morphism of a vector bundle TM — M
into a vector bundle End(D.) — M. Obviously, it is sufficient to define the values
of ®X on an arbitrary distribution D,.

If one linear web-preserving connection is given, the above considerations enable us
to describe the nr2-dimensional bundle of all web-preserving connections as follows.

Theorem 4.3. Let V be a web-preserving linear connection on M. Let us choose
& € {1,...,n}. Any web-preserving linear connection is of the form V = V+S where
S is a (1,2)-tensor field on M given by the formula

(4.12) S(X,Y)= > HN(@X)HY), XY € X(M)

a=1
where ®,.: TM — End(D,) is a differentiable vector bundle morphism.

Proof. Let V, V be W-preserving connections, S = V — V. Then &, in-
troduced by ®.X = ®X|D,, x € {1,..., n} satisfies the conditions required by the
theorem. On the other hand, let V be W-preserving and let ®,,: TM — End(Dx) be
a bundle morphism. Let us introduce S by the formula (4.12). An evaluation shows
that S satisfies (4.10): HES(X,Y) = L HFHX (2 X)(HEY) = HE(2.X)(HFY) =
EHS(@KX)H;‘(H;;Y) =S(X,HRY). ?50 (4.11) holds, and V + S is W-preserving.

]
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5. THREE-WEBS

In particular, let n = 2. The isomorphisms B?, B} can be extended by linearity
to an involutory tangent bundle isomorphism

B:TM - TM, VYX€X(M) BX =DBiP,X +BiPX, B?X=X.
A 3-web can be given as a couple {Py, B} of (1,1) tensor fields satisfying
P?=P, PB+BP, =B, B?=id

Here P, = H]l is a projector onto D), P, = H? =id — P is a projector onto Dg.

A 3-web is holonomic if and ounly if [P,P1] = 0 and B[B,B|(PX,PY) =
[B,Bl(PLX,PY) for X, Y € X(M) (here [] denotes the Nijenhuis bracket).

There exists a unique function v: {1,2} = {1,2} — with v(a) # a given by

y(1)=2, (@2 =1

That is, for an anholonomic 3-web (with a fixed order of web distributions) the above
construction yields a unique canonical y-connection

VxY = HIHIX, H}Y) + H}{H2, HYY) + HH2X, HIY) + HH X, H3Y)
= BR|P,X,BP\Y]| + BP\|P;X,BP,Y] + P[P, X, PY] + P3P, P

which coincides with the connection introduced by S.S. Chern [Ch] and reconstructed
by P.T. Nagy in [Ng].

A 3-web is called parallelizable if it is equivalent (locally diffeomorphic) to a regular
(parallel) 3-web formed by three systems of parallel affine r-planes in an affine space
R?" which are in general position.

Parallelizable webs are equivalently characterized either by vanishing of both the
torsion and the curvature tensor of the Chern connection, 7 = R = 0 [AK], [A&S],
or by the closing of the Thomsen figure, [Ch], [Ac], or by the condition that all
coordinatizing loops are abelian groups [Ac], [A&S].

A (holonomic) 3-web is called isoclinicly geodesic if T = 0 [A&S] (in [AK], pare-
tactical was used). It was proved in [Va2] that

T(PX,PY) = B[P,Bl(PX,PY), T(PX.PY)=-B[P,B|(PX, RY).
T(P.X,PY) = B[P, Bl(P,X,P,Y) = 0.

Especially, 7 = 0 if and only if [Py, B] = 0. It can be also verified that 7 = 0 iff
[HE, HZ)=0for o, B, v, k € {1,2}.
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A (holonomic) 3-web is called a Bol web if the curvature tensor R is antisymmetric
in one couple of arguments, that is, one of the following conditions is satisfied:

R(X,Y)Z = -R(X,2)Y, or =-R(Y,X)Z, or =-R(ZY)X.

6. EXAMPLES

Example 6.1. More generally, a (holonomic) (n + 1)-web of dimension r (of
codimension r) in R™ is usually called parallelizable if it is equivalent with a web
formed by n + 1 foliations (in general position) of parallel r-planes (respectively
of parallel (n — 1)r-planes). With respect to a web-adapted coordinate frame, the
corresponding tensor fields have matrix representations

0 0 o0
HY =0 Iag O
0 0 0

where I(, ) denotes a unit matrix in the position (a, 3).

According to Theorem 4.2. parallelizable r-dimensional (n + 1)-webs are in fact

vy

regular webs in the sense of Definition 3.3. and can be characterized by T = R = 0.

All coordinate n-quasigroups of a parallelizable r-codimensional (n + 1)-web are
abelian n-groups [G].

Example 6.2. A commutative Lie group G = (S!, ) of complex units gives rise
to an integrable parallelizable 3-web on the torus T? = S' x S! as follows. Let us
consider Lie subgroups

Gy =G x {1}, Gy ={1} x G, Go = {(9,9);9 € G}.

Then the factor spaces F; = (G' x G)/G;4, i = 0,1,2 define a 3-web of dimension one
on G x G with equivalence classes being the leaves (formed by meridians, parallels,
and the third system of closed curves). Obviously, local coordinates can be chosen
on T2 so that the coordinate frame is web-adapted, and H? are given by

(10 g (00

! 0 0/’ 2 0 1)’

01 00 01
H‘zz(o 0)‘ Hé:(1 0)' B:<1 0)‘

Both the curvature and the torsion tensors of the Chern connection are zero, the
web is parallclizable.
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More generally, if G = (G, -) is an r-dimensional Lie group with a unit e, a 3-web
of dimension 7 can be introduced on the analytic manifold G x G in a similar way
as a triple (Fo, F1, F2) where F; = (G x G)/G;. The resulting web is the so called
group 3-web since all coordinatizing loops are associative, the curvature tensor of the
Chern connection vanish, R = 0. A group web is parallelizable (7 = 0) if and only
if the Lie group G is commutative [AK].

Example 6.3. In R%, let us introduce web foliations by

Fi1:  x3 = const, x4 = const,

Fa:  xp = const, x9 = const,
1+ 23 Ty — 3

Fo: @1 = = const, @y = —— = const. .
T2+ 14 Ty — X4

The tangent distributions are Dy = (a,—‘jl, 3—,’2—2), Dy = (%, (]‘774)., and Dy is spanned

by any couple (vy,vz) of independent vectors satisfying de; (v:) = dea(vi) = 0,
1 =1,2. An evaluation shows that

1 T+ 23 1 ) + 23
dpy = ——hy = 2T pop L g Tt
1 Tyt 24 (@ + 4)? ? Ty + 24 ' (z2 + 24)? ¢
T] — 23 T — T3
dpy = hy ~ ———==hy — hs + ————h
2 (w7 — 24)? Ty—z5 0 (2 —za)?

and we can choose

a a3 I} a
v = (&1 +23) 57— + (22 +“)5w—2 + (@1 + 23) 57— + (22 + 24) 5—,

oz, O3 dxy
— a .9 2 9
v = (71 — 13)5 + (22 *14)612 + (~a + 1:3)51—3 + (22 + 24)574-

It can be easily seen that the tangent vectors

2] 5} 2] a
e1 = (1) +a3)5— + (@2 +24) 75—, €3 = (2] +23)5— + (22 + 24) —

dry Oy Oz3 Ox4’
a a 7} o
ez = (z1 - Is)a—zl + (22 - 14)6—“1 e =(~z, +13)a—$3 + (-2 + M)BTM

form a web-adapted frame, v; = e; + e3, V2 = €3 + eq, Bi(e1) = e3, Bi(ez) = es.
With respect to this adapted frame (e1, e2. €3, €4) we have

I 0 .
P1=H11=<0 0), P2=H.§:(g ?);

s (0 I L (00 (o1
Hl_(oo‘Hz‘Jo’B—<10'
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An evaluation yields

ler,eq] = €1 —ea, ler,e3) = —e1 +es, [e1,eq) = €2 —e3,
.
l

le2,es] = €1 —eq, e2,ea) = —e2tes,  [es,eq] =e3—eq,
Vee;=en  i=123,4,
—Vee2=Veger =V =6, Vees=-Veer=-Veea=es,
—Vee1=Veea=-V,e1=e, Vees=-V,e3=-—Ve3=ey.
The non-zero components of the connection in the adapted frame (e;) are
1Pl 2 T2 T3 =3, -1 =71 —
, Th=T3=05,=0 =T =T =N =Tu=1
1 72 —73 =4 —T3 -4 =T =72 — _
T =T5 =14, =T =I5, =Ty =T3 =T, 1

The torsion tensor 7(X,Y) = VxY — Vy X — [X, Y] does not vanish identically:
T(ex,e2) = B[P1, B(e1,e2) = —2e; + 2eq,
T(e3, eq) = B[Pl.B](eg‘m) = —2e3 + 2e4,
T(e1,e3) = T(er,eq) = T(ez,e3) = T(ez,e4) = 0.

The curvature tensor
RX.Y)Z =VxVyZ-VyVxZ-VixyZ
does not vanish identically, e.g.
Rez,es)es = =Ve,e5 — Ve ea — Ve eq + Ve,eq = 2e5 + 204 = —R(es, e2)eq,
Req,e1)ez = —2e3 — 2e4 = ~R(ey,eq)es,

and satisfies R(Y, X)Z = -R(X,Y)Z.

We conclude that the web is neither parallelizable nor paratactical nor a group
web, but it belongs to the family of Bol webs.

Remark 6.1. With respect to the coordinate frame (% aizz., %, a—‘:—;) the
corresponding matrix representations are

T1Xg — X324 3 ~ a3
2 214 — ToTs T T4 — TaTs | 5 po 0 Q
Bi=Q= 2 _ .2 . s Bp=Q7, - -1 9/
] — x5 Ty1To — T3Ty Q
2174 — T2T3 T1Tq — ToXa

I 0 00 0 QN 0 0
H‘lz(o o)’ Hg:(o 1)’ Hg:(o (g) Hé:(Q*‘ o)’

and the evaluations would be more complicated.
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