Article
Keywords:
asymptotic behaviour of paths; Wiener field; stochastic diffusion equation
Summary:
We prove a polynomial growth estimate for random fields satisfying the Kolmogorov continuity test. As an application we are able to estimate the growth of the solution to the Cauchy problem for a stochastic diffusion equation.
References:
[1] G. DaPrato J. Zabczyk:
Stochastic equations in infinite dimensions. Cambridge University Press, 1992.
MR 1207136
[2] A. Friedman:
Partial differential equations of parabolic type. Pгentice Hall, Englewood Cliffs, N.Y., 1964.
MR 0181836 |
Zbl 0144.34903
[3] A. Garsia:
Continuity properties of Gaussian pгocesses with multidimensional time parameter. Proc. бth Berkeley Symp. Math. Statistics and Probability. Univ. California Press, Berkeley and L. A., 1972, pp. 369-374.
MR 0410880
[4] A. M. Iljin A. C. Kalashnikov O. A. Olejnik:
Second order linear equations of parabolic type. Uspekhi Mat. Nauk 17(3) (1962), 3-146. (In Russian.)
MR 0138888
[5] R. S. Liptser A. N. Shiryaev:
Martingale theory. Nauka, Moscow, 1986. (In Russian.)
MR 0886678
[7] R. Redlinger:
Existenzsätze für semilineare parabolische Systeme mit Funktionalen. Dissertation Universität Karlsruhe, 1982.
Zbl 0535.35038