Article
Keywords:
evaluation; Fresnel integrals; Leibniz rule
Summary:
We evaluate the Fresnel integrals by using the Leibniz rule only on a finite interval.
References:
[JA] V. Jarník: Integrální počet II. ČSAV, Praha, 1955, pp. 340-342 and 361-363.
[ML] R. M. McLeod:
The generalized Riemann integral. The Mathematical Association of America, Washington DC, 1980.
MR 0588510 |
Zbl 0486.26005
[SW] J. D. DePree, Ch. W. Swartz:
Introduction to Real Analysis. John Wiley & Sons, New York, 1988, p. 199.
MR 1042294
[WE] R. Weinstock:
Elementary Evaluations of $\int_0^{infty} e^{-x^2} dx$, $\int_0^{infty} \cos x^2 dx$, and $\int_0^{infty} \sin x^2 dx$. Amer. Math. Monthly 97 (1990), 39-42.
MR 1034348
[YZ] J. van Yzeren:
Moivre's and Fresnel's integrals by simple integration. Amer. Math. Monthly 86 (1979), 691-693.
MR 1539141 |
Zbl 0446.26003