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ELEMENTARY EVALUATION OF FRESNEL'S INTEGRALS 

RUDOLF VYBORNY, Kenmore 

(Received May 7, 1990) 

Summary, We evaluate the Fresnel integrals by using the Leibniz rule only on a finite interval. 

Keywords: FresnePs integrals. 

INTRODUCTION 

The method of complex variables is most often used to evaluate the integrals 

Go = Jo° cos x2 dx 

and 

F0 = Jo° sin x2 dx . 

The similarity of G0 and F0 with 

J0 = J?e-*2dx 

has been exploited in [FL] and [YR], real variables method is also used in [JA]. 
Although these evaluations are not particularly demanding they do use tools not 
always available in an undergraduate course like transformation to polar coordinates 
for an improper double integral, the Leibniz rule for an improper integral etc. 
Recently Weinstock [WE] obtained all three integrals by using the Leibniz rule on 
a finite interval only, however, the calculation for F0 and G0 is not as simple as for J0. 
In this note we find all three integrals practically simultaneously almost as simply 
as Weinstock found J0. The auxilary function h below is a slight modification of 
a function from [SW] where it is used for evaluation of J0. In connection with this 
reference it should be mentioned that the use of the gauge integral (see also [ML] 
[Mac]) makes interchange of limit and integration, differentiation with respect to 
a parameter (even for an infinte interval) and similar tools far more accessible hence 
rendering elementary evaluation unnecessary. However, our method is not only 
elementary but also very simple. 

401 



THE CALCULATION 

We set y = a + iff with a ^ 0, y +- 0 and define 

J(t) = ft exp yx2 dx , 

W J y(i + x 2) 

We first show by integration by parts that J has a limit as t -> oo. As a con­
sequence we obtain that J is bounded, say \j(t)\ S K, and that J0 exists. Clearly 

fi exp yx2 dx = ft 2yx exp yx2 dx = — — h 
2yx 2yt 2y 

1 , exp yx2 

2 " V

J l ~ ^ + f ЈІ^- --d* 

Since |exp yx2 | g 1, the right hand side has a limit as t -> oo and so has J. 

Differentiating s and applying the Leibniz rule to h shows that 

s'(t) = 2 exp yf2 j 0 exp yx2 dfe 

and 

h'(t) = 2 exp yt2 j j f txp yx2t2 dx = 2 exp yt2 j 0 exp yx2 dx. 

Since s and h have the same derivative 

(i) 5(0 = h(t) - h(o) = h(t) - 1. 

4y 

Now we show that h(t) -» 0 as t -> oo. We have 

|rM0|S|B2O^dx|S|/l^d,| 
1 + x t + y 

and integration by parts shows that the last integtal equals 

It (t2 + y2)2 

Since J is bounded we obtain 

l ^ l š K l i + i + iV 
1 ' V2t 2í </ 
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Sending t to oo in (1) gives 

(2) lim s(0 -, - i . 
r->oo 4 y 

Setting y = — 1 gives the value of J0 = y/(n)j2. Let now y = /, it follows from (2) 
that 

(3) ( G o + iF0)2 = -| . 

It will be shown below that F0 > 0 and taking this into account it is easy to calculate 
from (3) that G0 = F0 = y/(n)\2 ~J2. 

For the rest of this note we assume /? > 0 and denote 

^o == \o e x P <*x2 cos fix2 dx 
and 

^o = \o e x P <*x2 sin fix2 dx . 

By separating real and imaginary parts we obtain from (2) 

ocn 
(4) *\ -&l=-

and 

(5) 2 ^ o 

4 | ľ | 
and 

ßn 

In order to solve (4) and (5) for ^ 0 and !F0 we show that !F0 ^ 0 (and therefore 
also F 0 ) . Equation (5) then implies that ^ 0 is also nonnegative. The substitution 
y = fix2 brings !F0 to the form 

\o f(y) sin y Ay 

Í 
J2. 

with decreasing / We show that for a non-negative integer k we have 
*(2fc + 2)n 

f(x) sin x dx ^ 0 , 
' 2 k n 

This will establish the required inequality !F0 ^ 0. Clearly 
/•(2fc+l)n /»(2fc+l)R 

f(x) sin x dx = /((2k + 1) rc)) sin x dx + 
J 2fcn J 2kn 

/*(2k + 2)n 
+ /((2k + 1) n)) sin x dx = 0 . 

J(2k+i)« 

Squaring (4) and (5), adding it together and taking square root gives 

(6) K + ^ = ~-
4 M 
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It is now easy to find # 0 from (5) and (6) 

_ V(-g + \y\) 

^°--27(2irv 

Using this and (5) 

«• _ V(« + ITD ,. 
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Souhrn 

JEDNODUCHÝ VÝPOČET FRESNELOVÝCH INTEGRÁLŮ 

RUDOLF VÝBORNÝ 

V článku se vypočítávají Fresnelovy integrály, za použití Leibnizova pravidla, pouze na ko­
nečném intervalu. 

Authoťs address: Rialanna St., Kenmore, Q 4069, Australia. 
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