[1] S. R. Bernfeld V. Lаkshmikаnthаm:
An Introduction to Nonlinear Boundary Value Problems. Academic Press, Inc, New York, 1974.
MR 0445048
[2] S. H. Ding J. Mаwhin:
A multiplicity result for periodic solutions of higher order ordinary differential equations. Differential Integral Equations 1 (1988), 31-39.
MR 0920487
[3] J.-P. Gossez P. Omаri:
Periodic solutions of a second order ordinary differential equation: A necessary and suffîcient condition for nonresonance. J. Differential Equations 94 (1991), 67-82.
DOI 10.1016/0022-0396(91)90103-G |
MR 1133541
[5] Ph. Hаrtmаn:
Ordinary Differential Equations. Wiley-Interscience, New York, 1969.
MR 0419901
[6] L. V. Kаntorovich G. P. Akilov:
Functional Analysis. Nauka, Moscow, 1977. (In Russian.)
MR 0511615
[7] J. Mаwhin:
Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conf. Ser. in Math. 40, American Math. Soc, Providence, 1979.
DOI 10.1090/cbms/040 |
MR 0525202
[8] F. Neumаn:
Global Properties of Linear Ordinary Differential Equations. Academia, Praha, 1991.
MR 1192133
[9] Ľ. Pindа:
A remark on the existence of small solutions to a fourth order boundary value problem with large nonlinearity. Math. Slovaca 4З (1993), 149-170.
MR 1274599
[10] Ľ. Pindа: On a fourth order periodic boundary value problem. Arch. Math. (Brno) 30 (1994), 1-8.
[11] Ľ. Pinda:
Landesman-Lazer type problems at an eigenvalue of odd multiplicity. Arch. Math. (Brno) 30 (1994), 73-84.
MR 1292560 |
Zbl 0819.34020
[12] N. Rouche J. Mawhin:
Équations différentielles ordinaires, T. 2: Stabilité et solutions périodiques. Masson et Cie, Paris, 1973.
MR 0481181
[14] B. Rudolf:
The generalized boundary value problem is a Fredholm mapping of index zero. Arch. Math. (Brno) 31 (1995), 55-58.
MR 1342375 |
Zbl 0830.34013
[16] V. Šeda:
On the three-point boundary-value problem for a nonlinear third order ordinary differential equation. Arch. Math. 2, Scripta Fac. Sci., Nat. UJEP Brunensis 8 (1972), 85-98.
MR 0322257
[17] V. Šeda:
Some remarks to coincidence theory. Czechoslovak Math. J. 38 (1988), 554-572.
MR 0950308
[18] V. Šeda:
Quasilinear and approximate quasilinear method for generalized boundary value problems. WSSIA 1 (1992), 507-529.
MR 1180135
[20] V. Šeda:
Fredholm mappings and the generalized boundary value problem. Differential Integral Equations 8 (1995), 19-40.
MR 1296108