Article
Keywords:
rate of convergence; bounded variation; rectangular partial sums; double Fourier series; double trigonometric series; Borel means; Euler means
Summary:
For real functions of bounded variation in the Hardy sense, $2\pi$-periodic in each variable, the rates of pointwise convergence of the Borel and Euler means of their Fourier series are estimated.
References:
[1] R. Bojanić:
An estimate of the rate of convergence for Fourier series of functions of bounded variation. Publications de L'Institut Mathématique, Nouvelle série 26(40) (1979), 57-60.
MR 0572330
[4] J. Marcinkiewicz: On a class of functions and their Fourier series. Collected papers. PWN, Warszawa, 1964, pp. 36-41.
[6] L. Tonelli: Série Trigonometrische. Bologna, 1928.
[7] M. Topolewska:
On the degree of convergence of Borel and Euler means of trigonometric series. Časopis pro pěstování matematiky 112(3) (1987), 225-232.
MR 0905967 |
Zbl 0625.42004