Previous |  Up |  Next

Article

References:
[1] P. Bernhard: On singular implicit linear dynamical systems. SIAM J. Control Optim. 20 (1982), 612-633. MR 0667644 | Zbl 0491.93004
[2] G. Conte, A. M. Perdon: A geometric approach to the theory of 2D-systems. IEEE Trans. Automat. Control AC-33 (1988), 10, 946 - 950. MR 0959020
[3] G. Conte, A. M. Perdon: Geometric notions in the theory of 2D-systems. In: Linear Circuits, Systems and Signal Processing: Theory and Application (C Byrnes and C Martin, eds.), North-Holland, Amsterdam 1988. Zbl 0675.93023
[4] G. Conte, A. M. Perdon: On the geometry of 2D systems. Proc. IEEE Internat. Symp. on Circuits and Systems Helsinki - Finlandia, 1988. Zbl 0695.93048
[5] E. Fornasini, G. Marchesini: Doubly indexed dynamical systems: State space models and structural properties. Math. Systems Theory 12 (1978), 59 - 72. MR 0510621 | Zbl 0392.93034
[6] T. Kaczorek: $(A, B)$-invariant subspaces and V-invariant subspaces for Fornasini-Marchesini's model. Bull. Polish Acad. Sci. Tech. Sci. 35 (1988).
[7] T. Kaczorek: Singular general model of 2D systems and its solutions. IEEE Trans. Automat. Control AC-33 (1988), 1060-1061. MR 0965201
[8] T. Kaczorek: General response formula and minimum energy control for the general singular model of 2D systems. IEEE Trans. Automat. Control AC-35 (1990), 433 - 436. MR 1047996
[9] T. Kaczorek: Existence and uniqueness of solutions and Cayley-Hamilton theorem. Bull. Polish Acad. Sci. Tech. Sci. 37 (1989) (in press). Zbl 0721.93045
[10] F. Lewis: A survey of 2D implicit systems. Proc. IMACS Internat. Symp. on Mathematical an Intelligent Models in System Simulation, Brussels, Belgium 1990.
[11] F. Lewis W. Marszalek, B. G. Mertzios: Walsh function analysis of 2D generalized continuous systems. IEEE Trans. Automat. Control (to appear, 1990). MR 1073259
[12] W. Marszalek: Two dimensional state space discrete models for hyperbolic partial differential equations. Appl. Math. Modelling 8 (1984), 11 - 14. MR 0734035 | Zbl 0529.65039
[13] K. Ozcaldiran: Control of Descriptor Systems. Ph. D. Thesis, Georgia Institute of Tech- nology, 1985.
[14] M. Wohnam: Linear Multivariable Control: a Geometric Approach. Third edition. Springer- Verlag, New York-Berlin-Heidelberg 1985.
Partner of
EuDML logo