[1] B. Cyr B. Riedle, P. Kokotovic: Hopf bifurcation in an adaptive system with unmodeled dynamics. In: Proc. IFAC Workshop on Adaptive Systems in Control and Signal Processing, San Francisco, CA 1983.
[2] F. R. Rubio J. Aracil, E. F. Camacho:
Chaotic motion in an adaptive control system. Internat. J. Control 42 (1985), 353-360.
MR 0803945
[3] F. M. A. Salam, S. Bai:
Disturbance-generated bifurcations in a simple adaptive system: simulation evidence. Systems Control Lett. 7 (1986), 269-280.
MR 0850444 |
Zbl 0595.93039
[4] F. M. A. Salam, S. Bai:
Complicated dynamics of a prototype continuous-time adaptive control system. IEEE Trans. Circuits and Systems CAS-35 (1988), 842-849.
MR 0947813 |
Zbl 0654.93042
[5] S. Bai, F. M. A. Salam:
Disturbance generated bifurcation in a prototype adaptive system with $e_1$-modification law. IEEE Trans. Automat. Control AC-33 (1988), 979-984.
MR 0959029
[6] I. M. Y. Mareels, R. R. Bitmead:
Bifurcation effects in robust adaptive control. IEEE Trans. Circuits and Systems CAS-35 (1988), 835-841.
MR 0947812 |
Zbl 0658.93050
[7] P. A. Ioannou, P. V. Kokotovic:
Instability analysis and improvement of robustness of adaptive control. Automatica 20 (1984), 583-594.
MR 0772226 |
Zbl 0548.93050
[8] B. Riedle B. Cyr, P. V. Kokotovic: Disturbance instabilities in an adaptive system. IEEE Trans. Automat. Control AC-29 (1984), 822-824.
[9] V. I. Arnold:
Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, New York 1983.
MR 0695786 |
Zbl 0507.34003
[10] J. Guckenheimer, P. Holmes:
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York 1983.
MR 0709768 |
Zbl 0515.34001
[11] R. Seydel:
Tutorial on continuation. Internat. J. Bifurcation and Chaos 1 (1991), 3-11.
MR 1104538 |
Zbl 0760.34014
[12] A. I. Khibnik, Yu. A. Kuznetsov V. V. Levitin, E. V. Nikolaev:
Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. Phys. D 62 (1993), 360-370.
MR 1207433