Previous |  Up |  Next

Article

References:
[1] P.J. Bickel, M.J. Wichura: Convergence criteria for multiparameter stochastic processes and some application. Ann. Math. Statist. 42 (1971), 1656-1670. MR 0383482
[2] P. Lachout: A martingale central limit theorem. Comment. Math. Univ. Carolinae 27 (1986), 2, 371-375. MR 0857555 | Zbl 0633.60038
[3] P. Lachout: Billingsley-type tightness criteria for multiparameter stochastic processes. Kybernetika H (1988), 5, 363-371. MR 0970213 | Zbl 0665.60009
[4] D. L. McLeish: Dependent central limit theorem and in variance principles. Ann. Probab. 2 (1974), 2, 620-628. MR 0358933
[5] S. M. Miller: Empirical processes based upon residuals from errorsin-variables regression. Ann. Statist. 17 (1989), 282-292. MR 0981450
[6] G. Neuhaus: On weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 (1971), 1285-1295. MR 0293706 | Zbl 0222.60013
[7] S. Portnoy: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Händle and D. Martin, eds.), Springer- Verlag, New York - Berlin - Heidelberg 1983, pp. 231-246. MR 0786311
[8] M. L. Straf: A General Skorohod Space and Its Applications to the Weak Convergence of Stochastic Processes with Several Parameters. Ph.D. Dissertation, Univ. of Chicago 1969.
[9] J. Štěpán: Probability Theory (in Czech). Academia, Prague 1987.
Partner of
EuDML logo