[1] P.J. Bickel, M.J. Wichura:
Convergence criteria for multiparameter stochastic processes and some application. Ann. Math. Statist. 42 (1971), 1656-1670.
MR 0383482
[2] P. Lachout:
A martingale central limit theorem. Comment. Math. Univ. Carolinae 27 (1986), 2, 371-375.
MR 0857555 |
Zbl 0633.60038
[3] P. Lachout:
Billingsley-type tightness criteria for multiparameter stochastic processes. Kybernetika H (1988), 5, 363-371.
MR 0970213 |
Zbl 0665.60009
[4] D. L. McLeish:
Dependent central limit theorem and in variance principles. Ann. Probab. 2 (1974), 2, 620-628.
MR 0358933
[5] S. M. Miller:
Empirical processes based upon residuals from errorsin-variables regression. Ann. Statist. 17 (1989), 282-292.
MR 0981450
[6] G. Neuhaus:
On weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 (1971), 1285-1295.
MR 0293706 |
Zbl 0222.60013
[7] S. Portnoy:
Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Händle and D. Martin, eds.), Springer- Verlag, New York - Berlin - Heidelberg 1983, pp. 231-246.
MR 0786311
[8] M. L. Straf: A General Skorohod Space and Its Applications to the Weak Convergence of Stochastic Processes with Several Parameters. Ph.D. Dissertation, Univ. of Chicago 1969.
[9] J. Štěpán: Probability Theory (in Czech). Academia, Prague 1987.