[1] M. C. Biggs: Minimization algorithms making use of nonquadratic properties of the objective function. J. Inst. Maths. Applies. 8 (1971), 315-327.
[2] C. G. Broyden:
The convergence of a class of double rank minimization algorithms, Part 1: general considerations. Part 2: the new algorithm. J. Inst. Maths. Applies. 6 (1970), 76 - 90, 222-231.
MR 0433870
[3] R. H. Byrd J. Nocedal, Y. X. Yuan:
Global convergence of a class of quasi-Newton methods on convex problems. SIAM J. Numer. Anal. 24 (1987), 1171-1190.
MR 0909072
[4] A. R. Conn N. I. M. Gould, P. L. Toint:
Testing a class of methods for solving minimzation problems with simple bounds on the variables. Math. Comp. 50 (1988), 399 - 430.
MR 0929544
[5] L. C. W. Dixon:
Variable metric algorithms: Necessary and sufficient conditions for identical behavior of nonquadratic functions. J. Optim. Theory Appl. 10 (1972), 34 - 40.
MR 0309305
[6] R. Fletcher: A new approach to variable metric algorithms. Comput. J. 13 (1979), 317-322.
[7] R. Fletcher:
Practical Methods of Optimization. Vol. 1 Unconstrained Optimization. J. Wiley \& sons, New York 1980.
MR 0585160 |
Zbl 0439.93001
[8] P. E. Gill W. Murray, M. Saunders:
Methods for computing and modifying the LDV factors of a matrix. Math. Comp. 29 (1974), 1051-1077.
MR 0388754
[9] D. Goldfarb:
A family of variable metric algorithms derived by variational means. Math. Comp. 24(1970), 23-26.
MR 0258249
[10] A. Griewank, P. L. Toint:
Local convergence analysis for partitioned quasi-Newton updates. Numer. Math. 39 (1982), 429-448.
MR 0678746 |
Zbl 0505.65018
[11] H. Kleinmichel:
Quasi-Newton Verfahren vom Rang-Eins-Typ zur Lösung unrestringierter Minimierungsprobleme. Teil 1: Verfahren und grundlegende Eigenschaften. Teil 2: N-Schritt-quadratische Konvergenz fur Restart-Varianten. Numer. Math. 38 (1981), 219-228, 229-244.
Zbl 0469.65039
[12] D. G. McDowell:
Conditions of variable metric algorithms to be conjugate gradient algo- rithms. J. Optim. Theory Appl. 41 (1983), 439 - 450.
MR 0728311
[13] J. J. More B. S. Garbow, K. E. Hillstrom:
Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981), 17-41.
MR 0607350
[14] S. S. Oren, and D. C. Luenberger:
Self-scaling variable metric (SSVM) algorithms. Part 1: Criteria and sufficient conditions for-scaling a class of algorithms. Part 2: Implementation and experiments. Management Sci. 20 (1974), 845 - 862, 863-874.
MR 0426427
[15] S. S. Oren, E. Spedicato:
Optimal conditioning of self scaling variable metric algorithms. Math. Programming 10 (1976), 70 - 90.
MR 0401164 |
Zbl 0342.90045
[16] M. R. Osborne, L. P. Sun: A New Approach to the Symmetric Rank-One Updating Algorithm. Rept. No. NMO/01, Australian National University School of Mathematics, December 1988.
[17] D. F. Shanno:
Conditioning of quasi-Newton methods for function minimization. Math. Comp. 24 (1970), 647-656.
MR 0274029
[18] D. F. Shanno, K. J. Phua:
Matrix conditioning and nonlinear optimization. Math. Programming 14 (1978), 144- 160.
MR 0474819 |
Zbl 0371.90109
[19] E. Spedicato:
A class of rank-one positive definite quasi-Newton updates for unconstrained minimization. Math. Operationsforsch. Statist., Ser. Optimization 14 (1983), 61 - 70.
MR 0694803 |
Zbl 0519.90075
[20] J. Stoer:
On the convergence rate of imperfect minimization algorithms in Broydeu's $\beta$-class. Math. Programming 9 (1975), 313-335.
MR 0413491
[21] Y. Zhang, R. P. Tewarson:
Least-change updates to Cholesky factors subject to the nonlinear quasi-Newton condition. IMA J. Numer. Anal. 7 (1987), 509-521.
MR 0968522 |
Zbl 0636.65061
[22] Y. Zhang, R. P. Tewarson:
Quasi-Newton algorithms with updates from the preconvex part of Broyden's family. IMA J. Numer. Anal. 8 (1988), 487-509.
MR 0975609 |
Zbl 0661.65061