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KYBERNETIKA-VOLUME 26 (1990), NUMBER 5 

COMPUTATIONAL EXPERIENCE 
WITH IMPROVED VARIABLE METRIC METHODS 
FOR UNCONSTRAINED MINIMIZATION 

LADISLAV LUKSAN 

The paper describes three improved variable metric methods for unconstrained minimization 
and shows their efficiency on a broad class of test problems. These methods are based on the 
controlled scaling and on the pertinent combination of the rank-one method with other variable 
metric methods. 

1. INTRODUCTION 

Variable metric methods are the most frequently used optimization methods for 
problems of a moderate size or for problems with structured Hessian matrices. 
These methods are iterative and their iteration step has the form 

x+ = x + as where Bs = —g , ( l . l) 

Here x and x+ are old and new vector of variables respectively, s is a direction 
vector, a is a positive stepsize chosen so that 

E+ - E < e^asTg and sTg+ ^ s2s
Tg , (1.2) 

with 0 < 6t < \ and ex < e2 < 1, F and F+ are old and new value of the objective 
function respectively, g and g+ are old and new gradient of the objective function 
respectively, and B is a symmetric positive definite approximation of the Hessian 
matrix that is constructed iteratively by means of the formula 

B+ = 1 (B + y- - yyT - i Bd(Bd)T + ?•(- v - Bd\(- y - BdY\ (1.3) 

with three parameters Q > 0, y > 0 and /?. In (1.3) we use the notation 

d = x+ — x = as , (1.4) 

y = 9+ ~ 9 , 
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and a = yTB xy , 

b = yTd, (1.5) 

c = dTBd , 

From (1.2) and from the positive definiteness of the matrix B we get a > 0, b > 0, 

c > 0. If we denote 

A = - , (1.6) 
ac 

the positive definiteness of the matrix B and (1.5) together with the Schwartz ine­
quality give 0 < X — 1. 

The parameter g > 0 (so called Biggs's parameter) has been introduced to improve 
the behavior of the variable metric methods in a strongly nonlinear case (see [1]). 
The parameter y > 0 (so called Oren's parameter) is important especially for the 
first iteration and serves to the scaling to the variable metric methods (see [14]). 
The parameter /? determines particular variable metric methods and it has to be 
chosen to keep the hereditary positive definiteness of the matrix B+, i.e. to satisfy 
the inequality ft > j8* where 

p* = — (1.7) 
1 - X \ J 

is the degenerate value of the parameter ft. The inequality 0 < X — 1 implies /3* < 0. 
If we set H = B"1 and H+ = ( B + ) _ 1 we can write (1.1) and (1.3) in the inverse 

form. Then 

and 
x+ = x + as where s = — Hg (1-8) 

H+ = y(n + -? - ddT - - Hy(Hy)T + 
\ y b a 

+=(!'-")(!'-"'J) <"> 
The parameter t] in (1.9) is connected with the parameter p in (1.3) by means of the 

relation 

, - f c ^ g or / , - f r - 1 ) " ' (HO) 
p - p* n-n* 

where 

ц* = — (1.11) 
1 - X 

is again the degenerate value of the parameter ^ and the matrix H* is positive definite 

for ^ > n*. 

The most frequently studied variable metric methods lie in the so-called convex 
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/3-class which is defined by the inequality 0 _•/? _^1 (or 0 ^ ^ = 1 by (1.10)). 
It has been proved, under mild assumptions, that variable metric methods from 
the convex /?-class are n-step quadratically convergent (see [20]) or superlinearly 
convergent (see [10]). In [5] and [12] it was shown that all variable metric methods 
with perfect line search i.e. with stepsize a chosen by the rule sTg+ = 0, are equi­
valent to each other. If we use a more economical imperfect line search (1.2), the 
efficiency of particular variable metric methods differs very much. Numerical com­
parisons show that the best variable metric method of the convex /3-class is the BFGS 
method (see [2], [6], [9], [17]) which uses the value /? = 0 (or 77 = 1 by (1.10)). 
Recently variable metric methods have been analyzed theoretically in [3] and it was 
pointed out that the BFGS method could be improved. This idea was confirmed 
experimentally in [21] and [22], where two new variable metric methods were 
introduced and their efficiency was demonstrated. These methods lie in the so called 
preconvex /3-class which is defined by the inequality /J* < /? < 0 (or 1 < 77 < co 
by (1.10)). Moreover, a scaled rank-one method was described in [16] and it was 
shown that this method is also better than the BFGS method. 

The main purpose of this paper is to introduce three new variable metric methods 
which are better than the classical BFGS method. In Section 2 we propose the 
concept of controlled scaling, which improves the classical BFGS method. In Section 3 
we introduce a simple safeguarded rank-one method. In Section 4 we describe a simple 
variable metric method which lies in the preconvex /J-class. Numerical comparison 
of these methods is presented in Section 5. Test problems used are given in the 
Appendix. 

2. THE CONTROLLED SCALING 

Let G be a matrix that satisfies condition Gd = y and let R = G1/2HG1/2 and 
R+ - G1/2H+G1/2. Then from (1.9) it follows that 

R+ - y (R + i I zzr - i Rz(Rz)T + n-(-z- Rz) (- z - RzY) (2.1) 
\ y b a a\b J \b J J 

where 
z = G1/2d = G~1/2y (2.2) 

and 
a = zTRz = yTHy 

b = zTz = yTd , (2.3) 

c = zTR~1z = d T H _ 1 J . 

The scaling of the variable metric methods was introduced in [14] to keep the condi­
tion number of the matrix R+ as small as possible. Next result has been proved 
in[14]. 
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Lemma 2.1. Suppose that (2.1) —(2.3) hold where R is a symmetric positive definite 
matrix. Let 

0 <; t] .g 1 (2.4) 
and 

- £ * £ - . (2-5) 
c y /3 

Then x(R+) ^ x(R) where x(R) is the spectral condition number of the matrix R. 

It is clear (see (2.4)) that this lemma is useful only for the convex /3-class of variable 
metric methods. We prove a similar result for the preconvex /i-class of variable 
metric methods. 

Lemma 2.2. Suppose that (2.1) —(2.3) hold where R is a symmetric positive 
definite matrix. Let 

1 < t] < oo (2.6) 
and 

- - . S S l f (2-7) 
c y b 

Then x(R+) <. rj x(R) where x(R) is the spectral condition number of the matrix R. 
Proof. From (2.1) we have R+z = QZ SO that Q is the eigenvalue of the matrix R+ 

that corresponds to the eigenvector z. Let v is an arbitrary eigenvector of the matrix 
R+ which satisfies zTv = 0. Then 

vTR+
v = y (vTRv + *LZJL (vTRzV 

V zTRz V ' 

by (2.1), which together with (2.6) gives 

vTR+v (vTRv , ,v (vTRz)2 zTR2z\ ^ 
—-— = y[-r- + (n-i) \ r i - = — = 

vTv \ vTv V vTvzTR2z zTRz J 

<y(l + rj-i) IRII = ytilR\\ 

where |R | | is the spectral norm of the matrix R. Therefore 

| R + | | ;£ max (g, w|| .Rl). (2.8) 

On the other hand, (2.3) and (2.7) imply 
Q a zTRz „ n 
- <=*/- = > / — - - ^ ^ | | R | | , 
y o z z 

which together with (2.8) gives | R + | ^ w | ^ | | . Since )8* < p < 0 for 1 < >/ < oo, 
we can continue as in the proof of Lemma 2.1 given in [14], so that we obtain 
IKR"*-)-1 J < (l/y) [R - 1 ! which together with | |R + | = f/y|R| gives x(R+) = ^ ( R ) . 

n 
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Another approach to the scaling of the variable metric methods was proposed 
in [15]. It is based on the optimal conditioning of the matrix R+ = R~1/2R+R~1/2. 
Since 

x(R+) = x(R) x(R+) S AR) 4R+) > (2-9) 

the minimal value of x(R+) could give nearly minimal value of x(R+) . We summarize 
the results given in [15]. 

Lemma 2.3. Suppose that (2.1) —(2.3) hold where R is a symmetric positive definite 
matrix. Denote R+ = R~1/2R+R~1/2. Then the matrix R+ has n - 2 unit eigen­
values and the remaining two eigenvalues £._ <, £2 satisfy the equation 

where 

and 

Є - pÇ + q = 0 , 

j _ Л Q c 

n* y b 

t-te-x(i-l 
y b \ n* 

If we denote fj = 1 — njn* and co = (gjy) (c/b) then: 

(i) The ratio £2/^1 c a n he expressed in the form 

UЛ+ 11(1+ IY-4XІ 
£2 \(° ) V VV<̂  / <s 

Kco J \j\\co J CO, 

(ii) The ratio £2/£i reaches its minimum for ~ = co. 

(iii) If fj = co then ^ _ 1 _ £2 if and only if n2 - 2" + n* = 0. 

Lemma 2.3 is a basis for the optimal scaling of the variable metric methods. For 
a given parameter Q > 0 and a parameter n which satisfies the condition n2 — 
— 2n + n* <. 0 we can determine the optimal scaling factor y from the equation 

- - = 1 - ^ . (2.10) 
y b n* 

It can be easily proved that the optimal choice (2.10) satisfies the condition (2.5) 
for 0 _ n _ 1 and the condition (2.7) for 1 < n < 00. Moreover, from Lemma 2.3 
it follows that 

X(R+) = X + VC1 - _j (2.11) 
v ; I - V ( I - I ) v ; 

for the optimal choice (2.10). However, (1.6) and (2.3) together with the Kantorovich 
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inequality imply 

x = zTz > 4x^ 
zTRzzrR'1z (x(R) + l ) 2 ' 

which after setting into the equation (2.11) gives 

x(R+) < x(R). 

This result together with Lemma 2.2 and the inequality (2.9) imply 

x(R+) = min (n, x(R)) x(R) . (2.12) 
This shows that, for the optimal choice (2.10), x(R+) is bounded from above even 
if the parameter ^ tends to infinity. Let us note that from r,* < 0 it follows 

1 - V(l - V*) < 0 < 2 < 1 + 7(1 - r,*) 

so that the inequality ^ — 2^ + ^ <. 0 is satisfied for the convex /j-class of variable 
metric methods and for a sufficiently broad part of the prevonvex /i-class of variable 
metric methods. 

After this theoretical introduction to the scaling of the variable metric methods 
we pass to practical questions. The main significance of the scaling consists in the 
requirement of the acceptance of the initial stepsize ((1.2) could be satisfied for a = 1). 
This is the case when variable metric methods spare function evaluations. In [18] 
it was pointed out that the scaling in the first iteration only (so-called preliminary 
scaling) is often sufficient for this purpose. In Section 5 (Table 1) we show, for the 
case of the BFGS method, that the preliminary scaling reduces the number of function 
evaluations very much while scaling in each iteration can be unstable. But, in many 
cases, scaling in each iteration has a better performance than the preliminary scaling. 
This fact invites the proposition of a new scaling strategy. An easy one which we 
recommend (so-called controlled scaling) is based on the success in the first attempt 
with the stepsize at (usually a = a1 = 1). 

Algorithm 2.4. Given E, El5 E+, g, gu g +, s (usually Fx = F+, g1 = g+) and e. 

Step 1: In the first iteration (or after restart) determine y from (2.10) and go to Step 5. 
Otherwise compute the ratio x = sTg1ls

Tg. 
Step 2: If |T| <. s and F <. F+ then set y = 1 and go to Step 5. Otherwise determine 

y for (2.10). 
Step 3: If y > 1 and (E > E+ or T < 0) then set y = 1 and go to Step 5. If y < 1 

and (E < E+ and T > 0) then set y = 1 and go to Step 5. 
Step 4: If y < e or y > l/e then set y = 1. 
Step 5: Continue in the update (1.3) or (1.9) with the given value y. 

The choice of the parameter e is very selective and our recommended value e = 0-4 
gives a very good compromise between the preliminary scaling and scaling in each 
iteration. As we can see from Table 1, there is some reserve in the efficiency of the 
controlled scaling. It could stimulate further research in this field. 
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3. THE SAFEGUARED RANK-ONE METHOD 

The rank-one method is defined as that for which 

y-b 

a = - « — . (3.i) 

B+ = - / B + — i y - Bd V' y - Bd) \. (3.2) У . nЛfУ 

Then 

yb_c\e J\e 

The rank-one method has two advantages. It is very simple and it has a quadratic 
termination property (it finds the minimum of a quadratic function within at most 
n steps) even if the line search is imperfect. Unfortunately, this method does not 
preserve the hereditary positive definitieness of the matrix B+ (for an arbitrary 
value ofylo) since the case /? < jS* can occur. Therefore it can be unstable and it has 
to be adapted. There are two possibilities how to safeguard the rank-one method. 
The first one is based on the suitable scaling and the second one is based on the 
pertinent combination of the rank-one method with other variable metric methods. 

The scaling is a known and frequently studied mean for improving the rank-one 
method (see [1], [19]). The most accomplished algorithm of this type has been 
proposed recently in [16]. We summarize the main ideas contained in [16]. 

Using (1.10) we can transform (3.1) into 

Qb 

rj = - I — . (3.3) 
Q-b-a 
y 

If we substitute (2.10) into (3.3), we get 

r]2 - 2r] + r]* = 0 (3.4) 

after some algebraic manipulations. The equation (3.4) has two real roots. We choose 

the root belonging to the preconvex /j-class. Hence 

r, - 1 + V(l ~ r,*) (3.5) 

and according to (2.10) we obtain 

e- = 2 (1 + V(l - X)). (3.6) 
y b 

Note that the inequality rj2 - 2r] + r\* __ 0 used in Lemma 2.3 is always satisfied 

(see (3.4)). 
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The basic strategy proposed in [16] is the following: if Qb > a then set y = 1 else 
compute y from (3.6). This strategy is superior than the unsealed BFGS method, but it 
is inferior than the preliminary scaled BFGS method (in fact the basic strategy has 
been slightly modified in [16] to give better results). This fact is probably caused by 
too frequent scaling. Therefore we recommend a different strategy: 

Algorithm 3.1. Given a, b, c and Q. 

Step 1: Compute the value y using either the preliminary scaling strategy or the 

controlled scaling strategy (Algorithm 2.4). 

Step 2: If (g/y) b > a then use rank-one method (3.2) else use the BFGS method 
(i.e. (1.3) with 0 = 0). 

This algorithm is very effective as it is shown in Section 5. 

4. A SIMPLE PRECONVEX METHOD 

Recently most attention has been devoted to the preconvex /j-class of variable 
metric methods. In [21] the new variable metric method has been derived by varia­
tional means as the least-change update to Cholesky factors subject to the nonlinear 
quasi-Newton condition. This method belongs to the preconvex /3-class but is more 
complicated then other variable metric methods because a four-degree polynomial 
equation has to be solved. 

Another variable metric method which lies in the preconvex /i-class has been 
proposed in [22]. It is exactly the one which minimizes the angle between the new 
direction vector and the new negative gradient. This method gives better results 
than the BFGS method, namely in case of the preliminary scaling, but it is again 
more complicated then other variable metric methods. 

In the rest of this paper we are going to show that there exists a simple preconvex 
variable metric method which is comparable with the methods described in [21] 
and [22]. This method is defined by the choice 

f/ = min(l + 7(1 - I , * ) , f/max), (4.1) 

where f/max is the value which serves for safeguard. If we use (1.10), we can write 

/? = - £ ~- |,*|g4 and /?J^Zlik*, H>^ax, 
1 + 7(1 - i;*) nmax - n* (4.2) 

where nmax = ^max - l)2 - 1 (we recommend the value nmax = 1000 so that n*ax » 
« 1 000 000). Moreover, from (2.10) and (1.11) we obtain 

Q a 

y ~ï 
^ = 7(1 + 71 -л), H 
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and 

Q a 
- 7 - - - = ? • И > ^ a x 5 (43) 

y b \ r\* 

Let |i7*| ^ ^* a x (the other case is very improbable). Then the choice (4.2) is the most 
negative one which can be optimally scaled by means of the theory explained in Sec­
tion 2. Moreover, if (4.3) is used, the resulting method is exactly the optimally scaled 
rank-one method (see (3.5) and (3.6)). However, if (4.3) is not used, the method 
(4.2) differs from the rank-one method, but maintains the positive definiteness even 
if the rank-one methods generates indefinite matrices. 

5. COMPUTATIONAL EXPERIMENTS 

In this section we present numerical results of comparative experiments for three 
methods: the BFGS method, the safeguarded rank-one (SRO) method described 
in Section 3, and the simple preconvex (SPC) method described in Section 4. All 
these methods were implemented by the same algorithm which differs only in com­
putation of the parameters Q > 0, y > 0 and /?. This algorithm is based on the 
Cholesky decomposition B = LDLT. The matrices L, D are updated using the techni­
que described in [8] and the direction vector s is obtained as a solution of the equa­
tion LDlJs = — g. The condition 

-sTg ^ £0||s|| \\g\\ (5.1) 

with £0 = 10 " 4 is tested and L = I, D — I (as in the first iteration) is set whenever 
(5.1) does not hold. The line search procedure used in our experiments is in fact an 
implementation of the algorithm given in [7; p. 25]. As is the usual practice, we take 
£x = 10~4 and £2 = 0-9 in the criterion (1.2). To improve stability of the variable 
metric methods within the bounds of precision in function evaluation the additional 
criterion 

|E+ - E| S e3|E| and \sTg + \ ^ e4|sTq| (5.2) 

with £3 = 2 . 10~13 and «4 = 5 . 10"x was added to (1.2) which was active for 
problem 9. In our implementation we have used the initial stepsize 

a i = min( l ,4 (E m ! n -E ) / s T ^) (5.3) 

where Emin = —1050 for problems with negative minima (Problems 9,15) and Emin = 
= 0 for other problems. Moreover, we have used the stepsize bound \x+ — x\\ = 
= a[|s| fS A, where A = 1 for some problems with exponential functions (Problems 
9,11) and A = 1000 for other problems. The unified termination criterion |[q[| <; 10 - 6 

was used for all our experiments. 
The comparative experiments for three variable metric methods was made with 

different scaling strategies and with different choices of the parameters Q > 0. We 
use the notation SCALING = 1 for unsealed case (y = 1), SCALING = 2 for 
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the preliminary scaling, SCALING = 3 for the controlled scaling (Algorithm 2.4), 

and SCALING = 4 for the scaling in each iteration. Furthermore, Q = 1 denotes 

the usual unit choice and Q + 1 denotes the choice proposed in [17]. The last one is 

defined by the following strategy: Q = 1 for Q* < 10~2, Q = Q* for 10~2 < n* < 

= 10+ 2, and Q = 1 for 10 + 2 < Q*, where 

dTy 

Qщ 

Q* = 
2(E - E+ + dтg+) 

(5.4) 

The results of our experiments are summarized in four tables that contain two 
numbers IT and IF for each run. Here IT is the number of iteration and IF is both 
the number of function evaluations and the number of gradient evaluations (in our 
line search procedure the value and the gradient of the objective function are evaluated 
at the same time). The rows of these tables correspond to 15 test problems that are 
given in the Appendix. All test problems were solved for 20 variables {n = 20) and 
in all cases the required precision [Jgr|| ^ 10~6 was reached. The row denoted by ]T 
contains total numbers over all test problems while the row denoted by % contains 
an average efficiency of particular methods related to the BFGS method with the 
preliminary scaling. 

Table 1 contains the comparison of several scaling strategies applied to the BFGS 
method. This table shows that the BFGS method without scaling is not sufficiently 
efficient for more complicated or more extensive problems while the preliminary 
scaling improves considerably its behavior (this was also pointed out in [18]). The 

Table 1. BFGS method. 

SCALING = 1 SCALING = 2 SCALING = 3 SCALING = 4 

IT IF IT IF IT IF IT IF 

1 131 196 120 131 119 128 346 356 
2 220 313 275 298 231 251 >400 >403 

3 106 145 105 107 73 76 70 72 

4 124 207 193 194 58 60 56 57 

5 42 64 46 47 25 26 20 21 

6 56 80 112 113 36 37 24 25 
7 32 68 20 21 20 21 23 24 

8 & 123 24 43 29 48 62 121 
9 41 64 34 36 34 36 89 93 
10 >400 >555 215 237 57 59 53 59 
11 244 293 132 158 148 174 313 333 
12 9 21 40 51 39 50 18 28 
13 8 9 6 7 7 8 5 6 
14 33 49 58 60 54 58 56 58 
15 22 42 16 18 19 21 18 20 

£ >1507 >2229 1396 1521 949 1053 >1553 >1676 
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Table 2. BFGS method. 

Q = 1 ŕ?Ф 1 

SCALING = 2 SCALING = 3 SCALING = 2 SCALING = 3 

IT IF IT IF IT IF IT IF 

1 120 131 119 128 95 108 106 119 
2 275 298 231 251 258 280 233 251 
3 105 107 73 76 97 100 66 71 

4 193 194 58 60 175 176 55 56 

5 46 47 25 26 31 32 25 26 
6 112 113 36 37 88 89 31 32 
7 20 21 20 21 19 20 18 19 
8 24 43 29 48 41 76 31 44 
9 34 36 34 36 50 52 42 43 
10 215 237 57 59 173 196 55 58 
11 132 158 148 174 131 152 109 127 

12 40 51 39 50 17 31 19 33 
13 6 7 7 8 5 6 5 6 
14 58 60 54 58 58 60 54 58 
15 16 18 19 21 16 18 19 21 

S 1396 1521 949 1053 1254 1396 868 964 

% 100-0 100-0 68-0 69-2 89-8 91-8 62-2 63-4 

scaling in each iteration can be inefficient in some cases (Problems 1, 2, 9, 11), but it 
can be the best one in some other cases (Problems 4, 5, 6, 13). The controlled scaling 
proposed in Section 2 is a suitable compromise between known scaling strategies 
and it is the best one for the BFGS method. 

Tables 2, 3, 4 contain the comparison of three variable metric methods: the BFGS 
method, the SRO method, and the SPC method. All studied methods was tested 
with two different scaling strategies and with two different choices of the parameter 
Q > 0. We pointed out the following conclusions: 

1) Both the SRO method and the SPC method perform much better then the BFGS 
method in the case of the preliminary scaling. 

2) Controlled scaling improves the behavior of all studied methods and, at the same 
time, it suppresses differences among them. 

3) Controlled scaling is very effective especially in combination with the choice 

Q -t- 1. 

To confirm our results we have performed additional tests with problems given 
in [13]. We used first 30 problems from [13] except problems 3 and 10 which are 
impertent for variable metric methods. Problems 1 — 19 has the same dimensionality 
as in [13]. Problems 20 — 30 were considered with 20 variables. Summary results 
are given in Table 5. 
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Table 3. SRO method. 

<? = 1 Q\ 1 

SCALING = 2 SCALING = 3 SCALING = 2 SCALING = 3 

IT IF IT IF IT IF IT IF 

1 122 141 123 142 99 117 99 117 
2 164 188 222 278 229 268 157 181 

3 65 67 81 86 61 62 56 60 
4 106 124 73 76 93 100 61 63 

5 41 44 37 39 31 32 25 26 

6 71 73 60 63 58 60 48 49 
7 19 21 19 21 19 20 22 23 

8 25 39 24 40 23 66 23 66 

9 36 40 40 42 46 50 47 50 

10 106 139 55 63 92 126 57 . 68 
11 84 105 86 106 96 118 99 120 
12 16 30 16 30 17 32 19 34 

13 6 7 7 8 5 6 5 6 

14 32 38 32 38 32 38 32 38 

15 16 21 16 21 16 21 16 21 

2. 909 1077 891 1053 917 1116 766 922 

/o 65-1 70-8 63-8 69-2 65-7 73-4 54-9 60-6 

Table 4. SPC method. 

<? = 1 Q = 1 

SCALING = 2 SCALING = 3 SCALING = 2 SCALING = 3 

IT IF IT IF IT IF IT IF 

1 121 161 119 159 111 139 106 134 

2 163 191 227 285 171 203 233 280 

3 76 77 67 68 71 72 65 73 
4 116 124 63 64 107 113 60 63 
5 38 39 36 37 30 32 29 31 
6 76 77 70 71 63 64 51 52 
7 19 20 20 21 18 23 19 23 

8 28, 38 35 53 39 68 29 42 

9 39' 40 50 51 46 48 43 45 

10 116 144 58 68 114 133 54 62 

11 86 107 93 115 102 133 107 132 

12 31 42 30 41 18 32 18 32 

13 5 6 7 8 5 6 5 6 
14 43 45 43 45 43 45 43 45 

15 15 17 15 17 16 18 16 18 

I 972 1128 933 1103 954 1129 878 1038 

/o 69-6 74-2 66-8 72-5 68-3 74-2 62-9 68-2 
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Table 5. 

Sum over 28 
IT IF 

Consumption in °/ 
IT IF 

SCALING = 2, Q = I 1555 1915 100-0 100-0 

BFGS SCALING = 3, Q = 1 1242 1538 79-8 80-3 

SCALING = 3, Q ф 1 1143 1426 73-5 74-5 

SCALING = 2, Q = 1 1155 1524 74-3 79-6 

SRO SCALING = 3, t? =• l 1157 1535 74-4 80-2 

SCALING = 3, tf ф t 1045 1447 67-2 75-6 

SCALING = 2, e = L 1161 1519 74-7 79-3 

SPC SCALING = 3, e = l 1150 1592 74-0 83-1 

SCALING = 3, Q ф l 1154 1552 74-2 81-0 

A P P E N D I X 

Our test problems were taken from [4] but they were slightly modified. These 15 
test problems consists in searching local minima of the objective function F(x) from 
the starting point x. 

Problem 1. 

F(x) = i[100(xll-Xi)2 + (xi_l-l)2l 
1 = 2 

xt = — 1-2 , i — odd 

Xi = 1-0 , i — even 

Problem 2. 

F(X) ="z[ioo(*?-i - *.-)2 + (*.-. - i)2 + 90(*5+i - *.+-)* + ' 
i = 2 

i— even 

+ 0 l ) 2 + 10(x, + x i + 2 - 2)2 + (x, - x j + 2)
2/10] 

X; = — 3 , i — odd , i ^ 4 

Xj = — 2 , i — odd , i > 4 

Xj = — 1 , i — even , i = 4 

Xj = 0 , i — even , i > 4 

Problem 3. 

*"(*) = E [(**-! + 1 0 x^)2 + 5(*;+i - x«+ 2)2 + 

i = 2 
i-even 

+ ( x i - 2 x , . + 1 ) 4 + Юíx,-! -XІ+ZYÌ 
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xt = 3 , mod (/, 4) = 1 

x{ = — 1 , mod (/, 4) = 2 

xt = 0 , mod (/, 4) = 3 

xt = 1 , mod (/, 4) = 0 

Problem 4. 

P(x) = I [ ( ^ M - xtY + M0(xi ~ xi+iT + 
i = 2 

i —even 

+ tan4(x,+ 1 - xi+2) + x?_i + (xi+2 - l)2] 

X; = 1 , / = 1 

x(- = 2 , / > 1 

Problem 5. 
n 

F(x) = __ l(3 _ 2 x 0 x£ _ x»'-l ~ *.+ l + ![P 

i = l 

p = 7/3, x0 = x„+ 1 = 0 

xt- = - 1 , V* 

Problem 6. 

E(x) = 11(2 + 5x2) x, + 1 + J x,(l + Xj)\' 
i = l j 'eJ . 

p = 7/3 , J,- = (/: max (l, / — 5) ^ j ^ min (n, / + 1)) 

3c,- = - 1 , V/ 

Problem 7. 
n n/2 

F(*) = Z l(3 - 2xi) xi - *«-i - *£+i + AP + __ I*. + x.+n/2. 
i = l i = l 

p = 7/3, x0 = x„+ 1 = 0 

x,- = — 1 , V/ 

Problem 8. 

E(x) - Ј] [ и + / _ ү (atj sin (xy) + ЬІJ cos (x y))] : 

i = l j = l 

atJ = 5[1 + mod (/, 5) + mod (j, 5)] 

ò ŕ. = (/ + /)/10 

xř = 1/Й , V/ 
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Problem 9. 

F(x) = X ^sin(/5£x£ + fijXj + yy) 
U,j)eJ 

au = 5(1 + mod (i, 5) + mod (j, 5)) 

& = 1 + i/10, /*, = 1 +J/10 

y.y~(*+1)/ io 

J ={( i ,7 ) :mod( | i -4 ,4) = 0} 

x£ = 1, Vi 

Problem 10. 
n f » 1 \ 2 / " j \ 2 

*•(*) = I N + 100°l1 - 1 - ) + 100°v - £ -
i-i \ '=i *./ \ i=i x£y 

x£ = 1 , Vi 

Problem 11. 

E(x) = I[exp(flx,.+ 1_y) + I0 ( (£x? + w - 10 - A,)2 + 
ieJ j=\ J = 1 

+ (x ;_3*i-2 - 5x£_.X£ - A2)
2 + (X?_4 + X^ 3 + 1 - A3)

2)] 

A, = -0-002008, A2 = -0-001900, A3 = -0-000261 

J = {i,mod(i, 5) = 0} . 

x £ = - 2 , m o d ( i , 5 ) = 1, i _;2 

xt = - 1 , mod (i, 5) = 1 , i > 2 

xt = 2 , mod (i, 5) = 2 , i <: 2 

3c. = - 1 , mod (i, 5) = 2 , i > 2 

3c; = 2 , mod (i, 5) = 3 

x£ = - 1 , mod (i, 5) = 4 

3c£ = - 1 , mod (i, 5) = 0 

Problem 12. 

FW = ( i ( ^ - i - 3 ) ) 2 + 
i = 2 

i —even 

+ I [(**-! - 3)2/1000 + (x£_! - x£) + exp(20(x£_1 - x£))] 
i = 2 

i —even 

x. = 0 , i - odd 

3c£ = - 1 , i - even 
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Problem 13. 

F(X)= t K-f-.r*,+1> + Wr""'+>)] 
i = 2 

i —even 

xt = — 1, z — odd 

3c(- = 1 , z — even 

Problem 14. 

E(x) = £ [2x, - *,_! - x i + 1 + h2(xt + z/z + l)3 /2]2 

i = l 

h = l/(n + 1) , x0 = x„ + 1 = 0 

x(- = ih(ih — 1) , Vz* 

Problem 15. 

F(x) = 2 J W x ; - xi+1))//z - 6-8/z£(e— - e*«)/(x«+i - **) 
i = 1 j = 0 

/z = l/(n + 1), x0 = x„+1 = 0 

x, = z'(« + 1 - z) /?/10 
(Received July 25, 1989.) 
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