Previous |  Up |  Next

Article

References:
[1] O. H. Bosgra, A. J. J. Van Der Weiden: Realizations in generalized state-space form for polynomial system matrices and the definition of poles, zeros and decoupling zeros at infinity. Internat. J. Control 33 (1981), 393-411. MR 0610894
[2] G. E. Hayton A. C. Pugh, P. Fretwell: Infinite elementary divisors of a matrix polynomial and implications. Internat. J. Control 47 (1988), 53-64. MR 0929725
[3] G. E. Hayton A. B. Walker, A. C. Pugh: Infinite frequency structure-preserving transformations for general polynomial system matrices. Internat. J. Control 52 (1990), 1-14. MR 1061020
[4] N. P. Karampetakis, A. I. G. Vardulakis: Generalized state space system matrix equivalents of a Rosenbrock system matrix. IMA J. Control Inform. 10 (1993), 323-344. MR 1376225 | Zbl 0807.93009
[5] N. P. Karampetakis A. C. Pugh A. I. G. Vardulakis, G. E. Hayton: Generalized state space representations for linear multivariable systems. In: Proceedings of the IEEE Mediterranean Symposium on New Directions in Control Theory and Applications, Chania 1994, pp. 209-216.
[6] H. H. Rosenbrock: State Space and Multivariable Theory. Nelson, London 1970. MR 0325201 | Zbl 0246.93010
[7] H. H. Rosenbrock, A. C. Pugh: Contributions to a hierarchical theory of systems. Internat. J. Control 19 (1974), 845-867. MR 0359888 | Zbl 0286.93002
[8] A. I. G. Vardulakis: On the transformation of a polynomial matrix model of a linear multivariable system to generalized state space form. In: Proceedings of the 30th IEEE Conference on Decision and Control, Brighton 1991.
[9] G. C. Verghese: Infinite-frequency Behavior in Generalized Dynamical Systems. Ph. D. Dissertation, Stanford University, Stanford 1978.
Partner of
EuDML logo