[1] T. Altiok, H. G. Perros:
Queueing Networks with Blocking. North Holland, Amsterdam 1989.
MR 1048619 |
Zbl 0699.68010
[2] V. E. Beneš:
A thermodynamic theory of traffic in connecting network. Bell System Technical Journal VLII (1963), 3, 567-607.
MR 0149572
[3] V. E. Beneš:
Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, New York 1965.
MR 0210516
[4] P. J. Curtois:
Decomposability: Queueing and Computer System Application. Academic Press, New York 1977.
MR 0479702
[5] P. J. Curtois, P. Semal: Bounds and conditional steady-state distribution in large Markovian and queueing models. In: Teletraffic Analalysis and Computer Performance Evaluation (O. J. Boxma, J. W. Cohen and H. C. Tijms, eds.), North Holland, Amsterdam 1986.
[6] A. Hordijk, A. Ridder:
Insensitive bounds for the stationary distribution on nonreversible Markov chains. J. Appl. Probab. 25 (1988), 9-20.
MR 0929500
[7] A. Hordijk, N. M. van Dijk: Networks of queues. Part I: Job-local balance and the adjoint process. Part II: General routing and service characteristics. Lecture Notes in Control and Inform. Sci. 60 (1983), 158-205.
[9] J. G. Kemeny J. L. Snell, A. W. Knapp:
Denumerable Markov Chains. Van Nostrand, Princeton N. J. 1966.
MR 0207042
[10] C. D. Meyer:
The condition of finite Markov chain and perturbation bounds for the limiting probabilities. SIAM J. Algebraic Discrete Methods 1 (1980), 273-283.
MR 0586154
[11] R. R. Muntz E. De Souza e Silva, A. Goyal:
Bounding availability of repairable computer systems. Performance Evaluation 17 (1989), 29-38.
MR 1031590
[12] J. K. Muppala, K. S. Trivedi: Numerical Transient Solution of Finite Markovian Systems. Research Report, Duke University 1990.
[13] R. Nelson, L. Kleinrock:
Rude--CSMA: A multihop channel access protocol. IEEE Trans. Comm. COM 33 (1985), 8, 785-791.
MR 0895048 |
Zbl 0572.94004
[14] E. Pinsky, Y. Yemini:
A statistical mechanics of some interconnection networks. In: Performance'84, Elsevier, North Holland, Amsterdam 1984.
MR 0822805
[15] P. J. Schweitzer:
Perturbation theory and undiscounted Markov renewal programming. Oper. Res. 17 (1969), 716-727.
MR 0256721 |
Zbl 0176.50003
[16] E. Seneta:
Sensitivity to perturbation of the stationary distribution: Some refinements. Linear Algebra Appl. 108 (1988), 121-126.
MR 0959699 |
Zbl 0657.60096
[17] W. J. Stewart (ed.):
Numerical Solutions of Markov Chains. Marcel Dekker, New York 1990.
MR 1142108
[18] H. C. Tijms:
Stochastic Modelling and Analysis. Wiley, New York 1986.
MR 0847718
[19] J. van der Wal, P. J. Schweitzer:
Iterative bounds on the equilibrium distribution of a finite Markov chain. Probab. in Engng. Inform. Sci. 1 (1987), 117-131.
Zbl 1133.60330
[20] N. M. van Dijk:
On the importance of bias terms for error bounds and comparison results. In: Numerical Solutions of Markov Chains (W. J. Stewart, ed.), Marcel Dekker, New York 1991, pp. 618-647.
MR 1142133
[21] N. M. van Dijk:
Approximate uniformization for continuous-time Markov chains with an application to performability analysis. Stochastic Process. Appl. 40 (1992), 339-357.
MR 1158030 |
Zbl 0753.60066
[22] N. M. van Dijk, M. L. Puterman:
Perturbation theory for Markov reward processes with applications to queueing. Adv. in Appl. Probab. 20 (1988), 78-99.
MR 0932536 |
Zbl 0642.60100
[23] N. M. van Dijk, J. P. Veltkamp: Product form for stochastic interference systems. Probab. in Engng. Inform. Sci. 2 (1988), 355-376.
[24] J. P. Veltkamp: Cost Functions for Interference Systems and VLSI High-level Synthesis. Ph. D. Thesis. Twente University 1988.
[25] B. S. Yoon, B. S. Shanthikumar: Bounds and approximations for the transient behaviour of continuous-time Markov chains. Probab. in Engng. Inform. Sci. 3 (1989), 175-109.