[1] W. Bonnice, R. Silverman:
The Hahn-Banach extension and the least upper bound properties are equivalent. Proc. Amer. Math. Soc. 18 (1967), 843 - 850.
MR 0215050 |
Zbl 0165.46802
[2] J. M. Borwein:
Continuity and differentiability properties of convex operators. Proc. London Math. Soc. 44 (1982), 3, 420-444.
MR 0656244 |
Zbl 0487.46026
[3] J. M. Borwein:
On the Hahn-Banach extension property. Proc. Amer. Math. Soc. 86 (1982), 1,42-46.
MR 0663863 |
Zbl 0499.46002
[4] K.-H. Elster, J. Thierfelder:
A general concept on cone approximations in nondifferentiable optimization. In: Nondifferentiable Optimization: Motivations and Applications (V. F. Demjanov; D. Pallaschke, eds.).(Lecture Notes in Economics and Mathematical Systems vol. 255.) Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1985, pp. 170-189.
MR 0822014
[5] R. B. Holmes:
Geometric Functional Analysis and its Applications. Springer-Verlag, Berlin-Heidelberg-New York 1975.
MR 0410335 |
Zbl 0336.46001
[7] G. Jameson:
Ordered Linear Spaces. (Lecture Notes in Mathematics, vol. 141.) Springer- Verlag, Berlin -Heidelberg-New York 1970.
MR 0438077 |
Zbl 0196.13401
[8] G. Köthe:
Topologische Lineare Raume I. Springer-Verlag, Berlin-Heidelberg-New York 1966.
MR 0194863
[9] R. Nehse:
The Hahn-Banach property and equivalent conditions. Comment. Math. Univ. Carolinae 19 (1978), 1, 165-177.
MR 0492379 |
Zbl 0373.46011
[10] R. Nehse:
Separation of two sets in product spaces. Math. Nachrichten 97 (1980), 179-187.
MR 0600832
[12] A. L. Peressini:
Ordered Topological Vector Spaces. Harper and Row, New York-Evanston-London 1967.
MR 0227731 |
Zbl 0169.14801
[13] J. Thierfelder:
Nonvertical affine manifolds and separation theorems in product spaces (to appear).
MR 1121215
[14] T. O. To:
The equivalence of the least upper bound property and the Hahn-Banach property in ordered linear spaces. Proc. Amer. Math. Soc. 30 (1971), 287-295.
MR 0417746
[15] M. Valadier:
Sous-differentiabilité des fonctions convexes a valeurs dans un espace vectoriel ordoné. Math. Scand. 30 (1972), 65-74.
MR 0346525
[16] J. Zowe:
Subdifferential of convex functions with values in ordered vector spaces. Math. Scand. 34(1974), 69-83.
MR 0380400