Previous |  Up |  Next

Article

References:
[1] W. Bonnice, R. Silverman: The Hahn-Banach extension and the least upper bound properties are equivalent. Proc. Amer. Math. Soc. 18 (1967), 843 - 850. MR 0215050 | Zbl 0165.46802
[2] J. M. Borwein: Continuity and differentiability properties of convex operators. Proc. London Math. Soc. 44 (1982), 3, 420-444. MR 0656244 | Zbl 0487.46026
[3] J. M. Borwein: On the Hahn-Banach extension property. Proc. Amer. Math. Soc. 86 (1982), 1,42-46. MR 0663863 | Zbl 0499.46002
[4] K.-H. Elster, J. Thierfelder: A general concept on cone approximations in nondifferentiable optimization. In: Nondifferentiable Optimization: Motivations and Applications (V. F. Demjanov; D. Pallaschke, eds.).(Lecture Notes in Economics and Mathematical Systems vol. 255.) Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1985, pp. 170-189. MR 0822014
[5] R. B. Holmes: Geometric Functional Analysis and its Applications. Springer-Verlag, Berlin-Heidelberg-New York 1975. MR 0410335 | Zbl 0336.46001
[7] G. Jameson: Ordered Linear Spaces. (Lecture Notes in Mathematics, vol. 141.) Springer- Verlag, Berlin -Heidelberg-New York 1970. MR 0438077 | Zbl 0196.13401
[8] G. Köthe: Topologische Lineare Raume I. Springer-Verlag, Berlin-Heidelberg-New York 1966. MR 0194863
[9] R. Nehse: The Hahn-Banach property and equivalent conditions. Comment. Math. Univ. Carolinae 19 (1978), 1, 165-177. MR 0492379 | Zbl 0373.46011
[10] R. Nehse: Separation of two sets in product spaces. Math. Nachrichten 97 (1980), 179-187. MR 0600832
[11] R. Nehse: Zwei Fortsetzungssätze. Wiss. Zeitschrift TH Ilmenau 30 (1984), 49-57. MR 0749750 | Zbl 0566.46002
[12] A. L. Peressini: Ordered Topological Vector Spaces. Harper and Row, New York-Evanston-London 1967. MR 0227731 | Zbl 0169.14801
[13] J. Thierfelder: Nonvertical affine manifolds and separation theorems in product spaces (to appear). MR 1121215
[14] T. O. To: The equivalence of the least upper bound property and the Hahn-Banach property in ordered linear spaces. Proc. Amer. Math. Soc. 30 (1971), 287-295. MR 0417746
[15] M. Valadier: Sous-differentiabilité des fonctions convexes a valeurs dans un espace vectoriel ordoné. Math. Scand. 30 (1972), 65-74. MR 0346525
[16] J. Zowe: Subdifferential of convex functions with values in ordered vector spaces. Math. Scand. 34(1974), 69-83. MR 0380400
Partner of
EuDML logo