[1] Btermann K.-R.:
Thomas Clausen, Mathematiker und Astronom. J. Reine Angew. Math. 216, 1964, 159-198.
MR 0164862
[2] Crandall R. E., Mayer E., Papadopoulos J.: The twenty-fourth Fermat number is composite. Math. Comp., accepted, 1999, 1-21.
[5] Jones R,, Pearce J.:
A postmodern view of fractions and the reciprocals of Fermat primes. Math. Mag. 73, 2000, 83-97.
DOI 10.2307/2691078 |
MR 1822751
[6] Křížek M., Chleboun J.:
A note on factorization of the Fermat numbers and their factors of the form $3h2^n + 1$. Math. Bohem. 119, 1994, 437-445.
MR 1316595
[7] Křížek M., Luca F., Somer L.:
17 lectures on the Fermat numbers. From number theory to geometry. Springer-Verlag, New York 2001.
MR 1866957
[8] Křížek M., Somer L.:
A necessary and sufficient condition for the primality of Fermat numbers. Math. Bohem. 126, 2001, 541-549.
MR 1970256
[9] Luca F.: Fermat numbers and Heron triangles with prime power sides. Amer. Math. Monthly, accepted in 2000.
[10] Lucas E.: Theoremes d'arithmétique. Atti della Reale Accademia delle Scienze di Torino 13, 1878, 271-284.
[13] Pepin P.: Sur la formule $2^{2^n} + 1$. C. R. Acad. Sci. 85, 1877, 329-331.
[14] Somer L., Křížek M.:
On a connection of number theory with graph theory. Czechoslovak Math. J. (submitted)
MR 2059267
[15] Szalay L.:
A discrete iteration in number theory. (Hungarian), BDTF Tud, Kozi. VIII. Termeszettudomanyok 3., Szombathely, 1992, 71-91.
Zbl 0801.11011
[16] Vasilenko O. N.:
On some properties of Fermat numbers. (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh., no. 5 1998, 56-58.
MR 1708238 |
Zbl 1061.11500
[17] Wantzel P. L.: Recherches sur les moyens de reconnaitre si un Probleme de Geometrie peut se resoudre avec la regie et le compas. J. Math. 2, 1837, 366-372.