Previous |  Up |  Next

Article

References:
[1] Coates J., Greenberg R.: Kummer theory for abelian varieties over local fields. Invent. Math. 124, 129-174 (1996). DOI 10.1007/s002220050048 | MR 1369413 | Zbl 0858.11032
[2] Hyodo O.: Wild ramification in the imperfect residue field case. Adv. Stud. Pure Math., 12, 287-314 (1987). MR 0948250 | Zbl 0649.12011
[3] Kato K.: A generalization of local class field theory by using K-groups. I. J. Fac. Sci. U. of Tokyo, Sec IA 26, 303-376 (1989). MR 0550688
[4] Kato K.: Swan conductors for characters of degree one in the imperfect residue field case. Contemporary Math. 83, 101-131 (1989). DOI 10.1090/conm/083/991978 | MR 0991978 | Zbl 0716.12006
[5] McCallum W.: Tate duality and wild ramification. Math. Ann. 288, 553-558 (1990). DOI 10.1007/BF01444549 | MR 1081262 | Zbl 0767.11057
[6] Serre J.P.: Corps locaux. Hermann (1962). MR 0354618 | Zbl 0137.02601
[7] Tate J.: WC-groups over p-adic fields. Seminaire Bourbaki, 156 13p (1957). MR 0105420
[8] Yamazaki T.: Reduced norm map of division algebras over complete discrete valuation fields of certain type. Comp. Math. 112, 127-145 (1998). DOI 10.1023/A:1000439025718 | MR 1626092 | Zbl 0990.11072
[9] Yamazaki T.: On Swan conductors for Brauer groups of curves over local fields. Proc. Amer. Math. Soc. 127, 1269-1274 (1999). DOI 10.1090/S0002-9939-99-04775-9 | MR 1487348 | Zbl 0921.14008
[10] Yamazaki T.: On Tate duality for Jacobian varieties. preprint (2001). MR 1968454 | Zbl 1049.11129
Partner of
EuDML logo