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Tate duality and ramification of division algebras 

Takao Yamazaki 

Abstract. We survey a ramification theory for division algebras of certain type, 
and apply it to a s tudy on the Tate duality for abelian varieties over local fields. 
We give a proof of a formula which express the different of a division algebra 
in terms of the Swan conductors. 

1. Introduction 
Let k be a complete discrete valuation field with perfect residue field. For a finite 
extension k'/k, there is a beautiful ramification theory. The wildness of ramifica­
tion in the extension k' fk is measured by the conductor. The different of k'/k is 
determinated by the conductor, and hence so is the discriminant. Furthermore, 
when k is an usual local field (that is, the residue field is a finite field), the conduc­
tor has a local class field theoretic meaning. We shall review this theory in Section 
2, in a form suitable for our purpose. 

Now let K be a complete discrete valuation field with imperfect residue field. 
Then it becomes highly difficult to construct a ramification theory for a finite 
extension of K. Although there are a lot of excellent works about it, the whole 
theory is far from completion. However, in [8] a ramification theory was constructed 
for a finite dimensional division algebra of certain type. To be precise, we assume 
that the residue field F of K satisfies [F : Fp] — p where p is the characteristic 
of F (hence F is imperfect), and let D be a finite dimensional central division 
algebra over K. There is a definition of the conductor of D. The different of D is 
determinated by the conductor. Furthermore, when K is a two-dimensional local 
field in the sense of Kato (that is, F is an usual local field), then the conductor is 
related to the two-dimensional local class field theory. We shall review this theory 
in Section 3. 
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As an application of our ramification theory, we study the Tate duality for 
abelian varieties over (usual) local fields in Section 4. The main purpose of this 
note is to survey those theories. No proof is given, except a proof of a different 
formula which is given in Section 5. 

This note is written while the author is a visitor at Utrecht University, whose 
hospitality is gratefully appreciated. He is supported by JSPS Postdoctoral Fellow­
ships for Research Abroad. 

2, Ramification theory for field extensions 
In this section, we briefly review the classical ramification theory for field extensions. 
Our main reference is [6]. Let k be a complete discrete valuation field whose residue 
characteristic is p > 0. The general theory is established for an arbitrary algebraic 
extension (at least when the residue field is perfect), but for our purpose we restrict 
to the following case: We assume k' /k is a totally ramified cyclic extension of degree 
pn. (So we do not have to assume the residue field to be perfect.) Let Ok and Ok> 
be the ring of integers in k and k' respectively. 

2.1 . Conductor 

Usually, the conductor of an extension is defined by using the ramification subgroups 
(cf. Remark 20). However, we avoid to use them and give a direct definition in our 
special case. For j = 0 , 1 , • • • , n — 1, we define 

tj = inf{ordifc'(tT(a)/a - 1) | a <E (k')\ a ' Ga\(k'/kj)}, 

where ord/f is the normalized valuation on k' and kj is the (unique) intermediate 
field of k' /k satisfying [kj : k] = pn~J~l. Then, we define for j — 0 , 1 , •• • , n — 1 

h i (^ i\/tn~± L tn~2 , tJ±l \ s — + (p - i ) ( ( + - ) . 
J pn-j-l «- p p2 pn-j + l' 

The number 6-o is called the conductor of the extension k'/k and is denoted by 
f(k'/k). (If j > 1, Sj is the conductor of the extension kj-i/k.) The numbers Sj 
are integers by the Hasse-Arf theorem. 

Remark 20. Using the notion of the upper numbering ramification group, the con­
ductor of an (arbitrary algebraic) extension k'/k is defined to be the number 

i n f { w > 0 | fc'cfcGal(^"!)}, 

where k is a separable closure of k. 

2.2. Different 

The different of k' /k is defined to be the inverse of the fractional ideal 

{ x € k' j Ttkl/k(xy) ' Ok for any y € Ok> } 

of Ok> and we denote it by V(k'/k). This ideal is determinated in terms of the 
conductors, by the following equation (see [6] IV Proposition 4) 

ordk,(V(k'/k)) =(p ~ l ) ( p n _ 1 s 0 +Pn~2si + • • • + s n - i ) +Pn - 1 

= ( p - l ) ( t 0 + p * 1 + - . - + p " - 1 < „ _ 1 ) + p n - l . 
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2.3. Relation with the local class field theory 

Assume the residue field of k is finite. Then, by the local class field theory, giving 
an cyclic extension k'/k of degree pn (together with an isomorphism Gal(k'/k) — 
Z/pnZ) is equivalent to giving a surjective homomorphism £k>/k : k* —V Z/pnZ. 
The conductor of k'/k can be written in terms of £k'/k

: 

f(k'/k) = mt{i\tk,/k(Uli+1)) = 0}, 

where Uk = {x e k* \ ordfc(x - 1) > i} is the i-th unit group of k and ord* is 
the normalized valuation on k. The proof is given in [6] Chapter XV Section 2. A 
similar interpretation can be given in a more general situation (see [4] Remark 6.5). 

3. Ramification theory for Division algebras 

In this section, we review the ramification theory for division algebras, following 
[8]. This theory is an analogue of the one for field extensions, so the reader is 
recommended to keep comparing with the preceding section. Let K be a complete 
discrete valuation field and F its residue field. We assume tha t the characteristic 
of F is p > 0 and [F : Fp] = p. Let D be a finite dimensional central division 
algebra over K and C its residue algebra. We assume tha t C is commutative and 
purely inseparable over F. This is equivalent to the condition that D ®K Kur is a 
division algebra, where Kur is the maximal unramified extension of K. We have 
[D : K]1/2 = [C : F) = the order of w, and we write this number by pn. (See [8] 
Proposition 2.1.) Let OK and OD be the ring of integers in K and D respectively. 

3 .1 . Conductor 

For any subset S of D*, we write 

t(S) = mi{ordD(aba-1b~1 - 1) | a,b € S}, 

where ord£> is the normalized valuation on D. For j = 0 , 1 , - • • , n — 1, we define 

I D\ is a division algebra such tha t \ 

# , n - M KCDiCD, I 
t{Dl } I (D1 : center of D x ) ^ = ^ \ f 

(center of Dx : K)I = pn-j~l. J 

Then, we define for j = 0 , 1 , • • • , n — 1 

tj , , . i n - l , tn-2 , tj+1 x 

»i = ^ r r + (P - D ( — + - r • • • + -£--• ) • 

The number s0 is called the Swan conductor of D and is denoted by sw(D). 

Remark 21. If [D] is the class of D in the Brauer group of K, the number Sj is 
the Swan conductor of the division algebra whose class is p*'[D]. The numbers Sj 
are integers by the comparison with Kato 's definition of the Swan conductor; see 
Subsection 3.3. 
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3.2. Different 

The different of D is defined to be the inverse of the fractional ideal 

{ x e D j TrdD/K(xy) G 0K for any y 6 OD } 

of OD, and we denote it by V(D/K). (Here, Trdrj/K is the reduced trace.) This 
ideal is determinated in terms of the conductors: 

OTdD(V(D/K)) = ( p - l ) ( p n _ 1 a o +Pn~2si + • • • + 5„_i) +pn - 1 

= ( p - 1)(«0 + P*i 4- • • • + P n ~ 1 t „ _ i ) + pn - 1. 

We shall prove this formula in Section 5. 

3 3 . Relation with the two-dimensional local class field theory 

Assume K is a two-dimensional local field in the sense of Kato, that is, the residue 
field F is a complete discrete valuation field with finite residue field (so F is 
isomorphic to a field of Laurent power series over a finite field). Thanks to the 
two-dimensional local class field theory of Kato [3], giving an division algebra D 
over K with [D : K]1^2 = pn is equivalent to giving a surjective homomorphism 
1)0/K '• K* ~* Z / p n Z . The conductor of D can be written in terms of T)D/K'-

(3.1) sw(D) = inf{* | r]D/K(UpX)) = 0} . 

Here UK — {x € K* I ord/<'(x — 1) > i} and o rd^ is the normalized valuation on 
K. This is proven in [8] Theorem 5.1, in a more general situation. 

Remark 22. Since K is a two-dimensional local field, there are rank 2 valuations on 
K and D, namely, normalized valuations OTO\K : K* —¥ Z © Z and OTO\D : D* —> 
Z © Z. (If we compose them with the first projection, we get the usual valuations 
ordx and ordo-) We regard Z © Z as an ordered abelian group with lexicographic 
order. 

If we replace o rd^ with ord}y in the definition of sw(D) in Subsection 3.1, we 
can define the rank two Swan conductor sw^2'(io) € Z © Z. On the other hand, 
we can define for each (i,j) G Z © Z the (i,j)-ih unit group UK of K to be 
{x E K* | o i d K (x — 1) > (i,j)}. In this generalized context, the equation (3.1) is 
still valid, in fact, by the same proof as in [8] Theorem 5.1 one can show 

sw^(L>) = M{(i,j) € Z © Z | VD/K(U{^J+1)) = 0} . 

4. Tate duality for abelian varieties 

As an application of our theory, we state a result concerning the Tate duality for 
abelian varieties over a local field, which is proved in [10]. Let k a finite extension 
of Qp, Ok the ring of integers in k, and Vk its maximal ideal. 

4.1 . Tate duality and McCallum's theorem 

Let A be an abelian variety over k and A1 its dual. We consider Tate 's perfect 
pairing [7] 

(4.1) <,>A: A(k) x i I 1 ( A ; , A t ) - - » Q / Z . 
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We define a descending filtration A(k) D U1 A(k) D U2A(k) D ••• as follows: 
UnA(k) is the subgroup of elements in A(k) whose formal coordinates around the 
origin are in the n- th power of TV We consider the annihilator of UnA(k) with 
respect to the Tate pairing (4.1). Before we state our result, we recall McCallum's 
important result in this direction: 

Theorem 4.1 . (McCallum [5] Theorem 1.) Let A be an abelian variety over k, and 
n a positive integer. If x G UnA(k) and £ G ker(LI3 (k,Al) -> H1(k',At)) where 
k' /k is a finite extension of conductor < n (in the sense of Subsection 2.1), then 
we have < x,£ >A= 0. 

Remark 23. (1) In general, we cannot get every element of the annihilator of UnA(k) 
only by this theorem. See [5] Section 4. 

(2) Coates and Greenberg obtained a description of the annihilator of U1 A(k) 
when A has good ordinary reduction (see [1] p. 170). 

4.2. The case of Jacobian varieties 

Let X be a projective smooth geometrically connected curve over k such tha t 
X(k) ^ <j). Let J be the Jacobian variety of X. We remark tha t the dual J1 

of J is canonically isomorphic to J. We shall give a description of the annihilator 
of UnA(k) when A = J. The key step is to use the ramification theory for division 
algebras developed in Section 3 in order to define the Swan conductor sw(w) of w 
for each element w in Br (X) . 

We take a regular model X of X, which is proper and flat over Ok. (The exis­
tence is due to Hironaka and Abhyankar. See [9], [10] for a more precise condition 
for X.) We set Y := (X xSpecC>fe Spec(Ok/Vk))red- If 17 is a generic point of Y, 
let A,, be the fraction field of the completion of the strict henselization of Ox,n-
Let w be an element of BT(X). We write by WA,, the image of w in BT(AV). Let 
D(u!Ar]) be the division algebra over A,,, whose class is WAV • We define SW(D(WAT) )) 
by applying Subsection 3.1 to D(wAn)- Now we define the Swan conductor of w to 
be 

sw(u;) — sup{ [s-w(D(wAv))/erj] | n runs over the generic points of Y }, 

where [ ] denotes the least integer function and ev denotes the multiplicity of {77} 
in the divisor X xSpecOfc Spec(Ok/Vk) on X. 

On the other hand, by the Hochschild-Serre spectral sequence for the etale 
sheaf G m , we can deduce the following exact sequence, which allows us to relate 
Hl(k,J) with Br (X) : 

(4.2) 0 -> Br(fc) -» BT(X) A Hl(k, J) -> 0. 

Here we used the assumption X(k) ^ 4>. 
The following theorem can be proved by using our ramification theory for 

division algebras, especially the result of Subsection 3.3. 

Theorem 4 .2 . (/[10] Theorem 2.2.) Let X be a projective smooth geometrically 
connected curve over k such that X(k) ~fi <t>, o.nd J its Jacobian variety. Let n > 1 
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he an integer. Then, the annihilator of UnJ(k) with respect to the Tate pairing 
(4.1) is 

0({w 6 Br(X) I sw(w) < n}), 

where 6 is the map in (4.2). 

5. Proof of a different formula 
In this section, we prove the formula in Subsection 3.2. We use the notations in 
Section 3. Following Hyodo [2], we define the depth of D/K to be the number 

d(D/K) = i n f { o r d D ( T r d D / ^ ( y ) / y ) | y e D*}. 

Then we have d{D/K) = o r d D ( P ( D / K ) ) - (pn - 1). We shall prove the following 
formula by induction on n: 

d(D/K) = (P- i)(P
n-isQ+pn-2

Sl + ••.+;__.). 

The case n = 0 is trivial. Suppose n > 1. We consider an extension Ki/K of degree 

p, which is contained in D. Let D\ be the centralizer of K\ in D. We define 

d(D\/K) = i n f { o r d D ( T r K l / ^ o T r d D l / ^ ( y ) / y ) \yeD$}, 

d(Dl/Kl) = inf{ord D (Trd D l / j f Y l (y) /y) j y e D J } , 

d(D/K) = m{{oYdD(TvKl/K(y)/y) | y e K{}. 

(Note tha t we used o rd D instead of o rd D l or ordj*;,, the normalized valuations on 
Di or Ki.) The following is clear from the definition: 

d(D/K) = m({d(Di/K) \ Kx/K runs all extensions as above}. 

We remark that the similar formula does not hold for the different. We also have 
the following formula, which can be seen by the totally same proof as in [2] Lemma 
2.4: 

d(Dx/K) = d(Dl/K1) + d(K1/K). 

So we have to show that 

(P - IKP^SO+P'^S! + ••• + s n _ i ) < d ( D i / K i ) + d ( K i / K ) 

for any Ki/K and tha t the equality holds for some Ki/K. 

We apply the definition in Subsection 3.1 to the division algebra Di and define 
s! (j = 0 , 1 , • • • , n — 2) to be the Swan conductor of the division algebra whose 
class in Br (K i ) is p>[Di]. (Here [D\] is the class of D\ in Br (K i ) ; see Remark 21.) 
By [8] p. 142, we may assume either (A) or (B) below. Furthermore, there exists 
at least one Ki which satisfies the equality in the inequalities in (A) or (B) (with 
£ = s n _ i ) . 

(A) Ki/K is a totally ramified Galois extension. Pu t t = o r d ^ ^ l — a-(7r)/?r) 

where IT is a prime element of Ki and a is a generator of G a l ( K i / K ) . Let m be an 

integer satirfying sm <t< s m _ i . Then 

m < n - 1, 

s'j > psj + (1 - p)t j = 0 ,1 , • • • m - 1, 

s'j > Sj j = m + 1, m -f 2, • • • , n — 2. 
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See [8] Lemma 4.2, especially the equations (4) and (7) thereof. Note tha t we have 

d(Dl/Kl) = (p- l)(pn"2s'0 + p"- 3 *; + • • • + _'„_-), 

d(K1/K)=pn-H(P-l)(t + l)-(p-l)), 

by the inductive hypothesis and [6] V Lemma 3 respectively. 
(B) K\/K is a Galois extension whose ramification index is 1 and whose residue 

extension is purely inseparable. Pu t t = pord/^j (1 — a(h)/h) where a is a generator 
of G a l ( K i / K ) and h is an unit element in K\ whose residue class generates the 
residue field of Ki over F. Let m be an integer satisfying s m < t < s m _ i . Then 

m < n — 1, 

s'j > Sj + ( 1 / p - l)t j - 0 , l , - m - l , 
s'j > ( l /p) , s j j = m + 1, m + 2, • • • , n — 2. 

See [8] Lemma 4.4. Note that we have 

d(Dl/Kl) __ p(p - l ) ( p n ~ 2 s 0 + p n - 3 s ' 1 + • • • + s'n_2), 

d(K1/K)=pn-1(p~l)t, 

by the inductive hypothesis and [2] (2-10) respectively. 
In the case (A), we calculate 

(p-\)-l(d(D_/K_) + d(Kl/K)) 

= pn-lt+pn~2s'0 + ••• +pn-m-1s'm_1 + p n - m _ 2 s ' m + ••• + x'n__2 

> pn~h + p n - 2 ( p s 0 + (1 - p)t) + •••+ pn-m-l(psm^ + (1 - p)t) 

+ p n - m ~ 2 s m + i + 1- Sn_i 

= p n ~ 1 S 0 + • • • + p " - m S m - l + Pn'm~lt + p n - m - 2 S m + 1 + • • • + Sn_i 

>pn~ls0 + ••• + S n _ i , 

and the equalities hold when t = s „ _ i . A similar calculation in the case (B) 
completes the proof. 
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