Previous |  Up |  Next

Article

References:
[1] K. Alladi: On generalized Euler functions and related totients. in New concepts in arithmetic functions, Matscience Report 83, Madras,, 1975. MR 0485656
[2] J. Chidambaraswamy R. Sitaramachandrarao: Asymptotic results for a class of arithmetical functions. Monatsh. Math. 99, 1985, pp. 19-27. MR 0778167
[3] P. Haukkanen: Some generalized totient functions. Math. Student 56, 1988, pp. 65-74. MR 1018263
[4] P. Haukkanen P. J. McCarthy: Sums of values of even functions. Portugal. Math. 48, 1991, pp. 53-66. MR 1107258
[5] H. G. Kopetzky: Ein asymptotischer Ausdruck für eine zahlentheoretische Funktion. Monatsh. Math. 84, 1977, pp. 213-217. DOI 10.1007/BF01538032 | MR 0472735 | Zbl 0551.10034
[6] P. J. McCarthy: Introduction to arithmetical functions. (1986), Springer-Verlag, New York, Berlin. MR 0815514 | Zbl 0591.10003
[7] W. Narkiewicz: On a class of arithmetical convolutions. Colloq. Math. 10, 1963, pp. 81-94. MR 0159778 | Zbl 0114.26502
[8] S. S. Pillai: On an arithmetic function. J. Annamalai Univ. 2, 1933, pp. 243- 248. Zbl 0008.19603
[9] V. Sita Ramaiah: Arithmetical sums in regular convolutions. J. Reine Angew. Math. 303/304, 1978, pp. 265-283. MR 0514685 | Zbl 0391.10007
[10] Suryanarayana: Extensions of Dedekind's $\psi$ function. Math. Scand. 26, 1970, pp. 107-118. MR 0262188 | Zbl 0194.07501
[11] L. Tóth: Problem E 3211. Amer. Math. Monthly 94, 1987, p. 457 95; 1988, pp. 962-963.
[12] L. Tóth: An asymptotic formula concerning the unitary divisor sum function. Studia Univ. Babes-Bolyai, Math. 34, 1989, pp. 3-10. MR 1073748
[13] L. Tóth: The unitary analogue of Pillai's arithmetical function. Collect. Math. 40, 1989, pp. 19-30. MR 1078089 | Zbl 0712.11010
[14] L. Tóth: Some remarks on a generalization of Euler's function. Seminar Arghiriade 23, 1990 9pp. MR 1123938 | Zbl 0758.11005
[15] L. Tóth: The unitary analogue of Pillai's arithmetical function II. Notes Number Theory Discrete Math. 2 yr 1996, pp. 40-46. MR 1418833
[16] L. Tóth: Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, I. Divisor-sum functions and Euler-type functions. (1997), Math. Debrecen 50, 159-176. MR 1436397
[17] L. Tóth: Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, II. The divisor function. Studia Univ. Babes-Bolyai, Math., to appear.. MR 2361220
[18] L. Tóth: Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, III. On the function $\tau_k$. Studia Sci. Math. Hungarica, to appear.. MR 1637588
[19] L. Tóth: The number and the sum of $P$ - $k$-ary divisors of m which are prime to n. submitted.
[20] L. Tóth P. Haukkanen: A generalization of Euler's $\phi$-function with respect to a set of polynomials. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 39, 1996, pp. 69-83. MR 1451445
Partner of
EuDML logo