[1] A. Baker. :
Contribution to the theory of Diophantine equations I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A, 263:173-191, 1968.
MR 0228424
[2] A. Baker, H. Davenport. :
The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$. Quart. J. Math. Oxford, 20:129-137, 1969.
MR 0248079
[3] A. Baker, G. Wüstholz. :
Logarithmic forms and group varieties. J. reine angew. Math., 442:19-62, 1993.
MR 1234835 |
Zbl 0788.11026
[4] Yu. Bilu, G. Hanrot. :
Solving Thue Equations of High Degree. J. Number Theory, 60:373-392, 1996.
MR 1412969 |
Zbl 0867.11017
[6] Y. Bugeaud, K. Gyory. :
Bounds for the solutions of Thue-Mahler equations and norm form equations. Acta Arith., 74(3):273-292, 1996.
MR 1373714 |
Zbl 0861.11024
[7] J. H. Chen, P. M. Voutier. :
Complete solution of the Diophantine Equation $X^2 + 1 = dY^4$ and a Related Family of Quartic Thue Equations. J. Number Theory, 62:71-99, 1997.
MR 1430002
[8] H. Cohen. :
A Course in Computational Algebraic Number Theory. volume 138 of Graduate Texts in Mathematics. Springer, Berlin etc., third edition, 1996.
MR 1228206
[9] M. Daberkow C. Fieker J. Kluners M. E. Pohst K. Roegner, and K. Wildanger. : KANT V4. To appear in J. Symbolic Cornput., 1997.
[10] I. Gaal. :
On the resolution of some diophantine equations. In A. Petho, M. Pohst, H. C. Williams, and H. G. Zimmer, editors, Computational Number Theory, pages 261-280. De Gruyter, Berlin - New York, 1991.
MR 1151869 |
Zbl 0733.11054
[11] F. Halter-Koch G. Lettl A. Petho, and R. F. Tichy. :
Thue equations associated with Ankeny-Brauer-Chowla Number Fields. To appear in J. London Math. Soc.
MR 1721811
[12] C. Heuberger. :
On a family of quintic Thue equations. To appear in J. Symbolic Comput.
MR 1635238 |
Zbl 0915.11017
[13] S. Lang. :
Elliptic Curves: Diophantine Analysis. volume 23 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin - New York, 1978.
MR 0518817 |
Zbl 0388.10001
[14] M. Laurent M. Mignotte, and Yu. Nesterenko. :
Formes lineaires en deux logarithmes et determinants d'interpolation. J. Number Theory, 55:285-321, 1995.
MR 1366574
[15] E. Lee. : Studies on Diophantine equations. PhD thesis, Cambridge University, 1992.
[16] G. Lettl, A. Petho. :
Complete Solution of a Family of Quartic Thue Equations. Abh. Math. Sem. Univ. Hamburg, 65:365-383, 1995.
MR 1359142 |
Zbl 0853.11021
[17] G. Lettl A. Petho, and P. Voutier. :
On the arithmetic of simplest sextic fields and related Thue equations. In K. Gyory, A. Petho, and V. T. Sos, editors, Number Theory, Diophantine, Computational and Algebraic Aspects, pages 331-348. W. de Gruyter Publ. Co, 1998.
MR 1628852
[18] G. Lettl A. Petho, and P. Voutier. :
Simple families of Thue inequalities. To appear in Trans. Amer. Math. Soc.
MR 1487624
[19] K. Mahler. :
An inequality for the discriminant of a polynomial. Michigan Math. J., 11:257-262, 1964.
MR 0166188 |
Zbl 0135.01702
[21] M. Mignotte. :
Verification of a Conjecture of E. Thomas. J. Number Theory, 44:172-177, 1993.
MR 1225951 |
Zbl 0780.11013
[22] M. Mignotte A. Pethö, and R. Roth. :
Complete solutions of quartic Thue and index form equations. Math. Comp., 65:341-354, 1996.
MR 1316596
[23] M. Mignotte A. Pethö, and F. Lemmermeyer. :
On the family of Thue equations $x^3 - (n - 1)x{^2}y - (n + 2)xy^2 - y^3 = k$. Acta Arith., 76:245-269, 1996.
MR 1397316
[25] A. Pethö. :
Complete solutions to families of quartic Thue equations. Math. Comp., 57:777-798, 1991.
MR 1094956 |
Zbl 0738.11028
[26] A. Pethö, R. Schulenberg. :
Effektives Losen von Thue Gleichungen. Publ. Math. Debrecen, 34:189-196, 1987.
MR 0934900
[27] A. Pethö, R. F. Tichy. :
On two-parametric quartic families of diophantine problems. To appear in J. Symbolic Comput.
MR 1635234
[28] M. Pohst, H. Zassenhaus. :
Algorithmic algebraic number theory. Cambridge University Press, Cambridge etc., 1989.
MR 1033013 |
Zbl 0685.12001
[29] E. Thomas. :
Complete Solutions to a Family of Cubic Diophantine Equations. J. Number Theory, 34:235-250, 1990.
MR 1042497 |
Zbl 0697.10011
[30] E. Thomas. :
Solutions to Certain Families of Thue Equations. J. Number Theory, 43:319-369, 1993.
MR 1212687 |
Zbl 0774.11013
[31] A. Thue. : Über Annaherungswerte algebraischer Zahlen. J. reine angew. Math., 135:284-305, 1909.
[32] N. Tzanakis, B. M. M. de Weger. :
On the practical solution of the Thue equation. J. Number Theory, 31:99-132, 1989.
MR 0987566 |
Zbl 0657.10014
[33] P. Voutier. : Linear forms in three logarithms. Preprint.
[34] I. Wakabayashi. :
On a Family of Quartic Thue Inequalities I. J. Number Theory, 66:70-84, 1997.
MR 1467190 |
Zbl 0884.11021