Previous |  Up |  Next

Article

References:
[1] A. Baker. : Contribution to the theory of Diophantine equations I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A, 263:173-191, 1968. MR 0228424
[2] A. Baker, H. Davenport. : The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$. Quart. J. Math. Oxford, 20:129-137, 1969. MR 0248079
[3] A. Baker, G. Wüstholz. : Logarithmic forms and group varieties. J. reine angew. Math., 442:19-62, 1993. MR 1234835 | Zbl 0788.11026
[4] Yu. Bilu, G. Hanrot. : Solving Thue Equations of High Degree. J. Number Theory, 60:373-392, 1996. MR 1412969 | Zbl 0867.11017
[5] E. Bombieri, W. M. Schmidt. : On Thue's equation. Invent. Math., 88:69- 81, 1987. DOI 10.1007/BF01405092 | MR 0877007 | Zbl 0614.10018
[6] Y. Bugeaud, K. Gyory. : Bounds for the solutions of Thue-Mahler equations and norm form equations. Acta Arith., 74(3):273-292, 1996. MR 1373714 | Zbl 0861.11024
[7] J. H. Chen, P. M. Voutier. : Complete solution of the Diophantine Equation $X^2 + 1 = dY^4$ and a Related Family of Quartic Thue Equations. J. Number Theory, 62:71-99, 1997. MR 1430002
[8] H. Cohen. : A Course in Computational Algebraic Number Theory. volume 138 of Graduate Texts in Mathematics. Springer, Berlin etc., third edition, 1996. MR 1228206
[9] M. Daberkow C. Fieker J. Kluners M. E. Pohst K. Roegner, and K. Wildanger. : KANT V4. To appear in J. Symbolic Cornput., 1997.
[10] I. Gaal. : On the resolution of some diophantine equations. In A. Petho, M. Pohst, H. C. Williams, and H. G. Zimmer, editors, Computational Number Theory, pages 261-280. De Gruyter, Berlin - New York, 1991. MR 1151869 | Zbl 0733.11054
[11] F. Halter-Koch G. Lettl A. Petho, and R. F. Tichy. : Thue equations associated with Ankeny-Brauer-Chowla Number Fields. To appear in J. London Math. Soc. MR 1721811
[12] C. Heuberger. : On a family of quintic Thue equations. To appear in J. Symbolic Comput. MR 1635238 | Zbl 0915.11017
[13] S. Lang. : Elliptic Curves: Diophantine Analysis. volume 23 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin - New York, 1978. MR 0518817 | Zbl 0388.10001
[14] M. Laurent M. Mignotte, and Yu. Nesterenko. : Formes lineaires en deux logarithmes et determinants d'interpolation. J. Number Theory, 55:285-321, 1995. MR 1366574
[15] E. Lee. : Studies on Diophantine equations. PhD thesis, Cambridge University, 1992.
[16] G. Lettl, A. Petho. : Complete Solution of a Family of Quartic Thue Equations. Abh. Math. Sem. Univ. Hamburg, 65:365-383, 1995. MR 1359142 | Zbl 0853.11021
[17] G. Lettl A. Petho, and P. Voutier. : On the arithmetic of simplest sextic fields and related Thue equations. In K. Gyory, A. Petho, and V. T. Sos, editors, Number Theory, Diophantine, Computational and Algebraic Aspects, pages 331-348. W. de Gruyter Publ. Co, 1998. MR 1628852
[18] G. Lettl A. Petho, and P. Voutier. : Simple families of Thue inequalities. To appear in Trans. Amer. Math. Soc. MR 1487624
[19] K. Mahler. : An inequality for the discriminant of a polynomial. Michigan Math. J., 11:257-262, 1964. MR 0166188 | Zbl 0135.01702
[20] M. Mignotte. : Pethö's cubics. Preprint. Zbl 0960.11020
[21] M. Mignotte. : Verification of a Conjecture of E. Thomas. J. Number Theory, 44:172-177, 1993. MR 1225951 | Zbl 0780.11013
[22] M. Mignotte A. Pethö, and R. Roth. : Complete solutions of quartic Thue and index form equations. Math. Comp., 65:341-354, 1996. MR 1316596
[23] M. Mignotte A. Pethö, and F. Lemmermeyer. : On the family of Thue equations $x^3 - (n - 1)x{^2}y - (n + 2)xy^2 - y^3 = k$. Acta Arith., 76:245-269, 1996. MR 1397316
[24] M. Mignotte, N. Tzanakis. : On a family of cubics. J. Number Theory, 39:41-49, 1991. MR 1123167 | Zbl 0734.11025
[25] A. Pethö. : Complete solutions to families of quartic Thue equations. Math. Comp., 57:777-798, 1991. MR 1094956 | Zbl 0738.11028
[26] A. Pethö, R. Schulenberg. : Effektives Losen von Thue Gleichungen. Publ. Math. Debrecen, 34:189-196, 1987. MR 0934900
[27] A. Pethö, R. F. Tichy. : On two-parametric quartic families of diophantine problems. To appear in J. Symbolic Comput. MR 1635234
[28] M. Pohst, H. Zassenhaus. : Algorithmic algebraic number theory. Cambridge University Press, Cambridge etc., 1989. MR 1033013 | Zbl 0685.12001
[29] E. Thomas. : Complete Solutions to a Family of Cubic Diophantine Equations. J. Number Theory, 34:235-250, 1990. MR 1042497 | Zbl 0697.10011
[30] E. Thomas. : Solutions to Certain Families of Thue Equations. J. Number Theory, 43:319-369, 1993. MR 1212687 | Zbl 0774.11013
[31] A. Thue. : Über Annaherungswerte algebraischer Zahlen. J. reine angew. Math., 135:284-305, 1909.
[32] N. Tzanakis, B. M. M. de Weger. : On the practical solution of the Thue equation. J. Number Theory, 31:99-132, 1989. MR 0987566 | Zbl 0657.10014
[33] P. Voutier. : Linear forms in three logarithms. Preprint.
[34] I. Wakabayashi. : On a Family of Quartic Thue Inequalities I. J. Number Theory, 66:70-84, 1997. MR 1467190 | Zbl 0884.11021
Partner of
EuDML logo