[1] Chang C. C., H. J. Keisler:
Model Theory. North-Holland, Amsterdam 1973.
Zbl 0276.02032
[5] Lehmke S.: On Resolution-Based Theorem Proving in Propositional Fuzzy Logic with 'Bold' Connectives. Diploma thesis. University of Dortmund, Dortmund 1995.
[6] Novák V.:
Fuzzy Sets and Their Applications. Adam-Hilger, Bristol, 1989.
MR 1019090
[7a] Novák V.:
On the Syntactico-Semantical Completeness of First-Order Fuzzy Logic. Part I - Syntactical Aspects. Kybernetika 26 (1990), 47-66.
MR 1042231
[7] Novák V.:
On the Syntactico-Semantical Completeness of First-Order Fuzzy Logic. Part II - Main Results. Kybernetika 26 (1990), 134-154.
MR 1059796
[8] Novák V.:
The Alternative Mathematical Model of Linguistic Semantics and Pragmatics. Plenum, New York, 1992.
MR 1213455
[9] Novák V.:
On the logical basis of approximate reasoning. in V. Novák, J. Ramík, M. Mareš, M. Černý and J. Nekola, Eds.: Fuzzy Approach to Reasoning and Decision Making. Academia, Prague and Kluwer, Dordrecht 1992.
MR 1219743
[10] Novák V.: Fuzzy Logic As a Basis of Approximate Reasoning. In: Zadeh, L. A., Kacprzyk, J. Fuzzy Logic for the Management of Uncertainty. J. Wiley & Sons, New York 1992.
[11] Novák V.:
Towards Formalized Integrated Theory of Fuzzy Logic. In: Bien Z., and K. Min (eds.), Fuzzy Logic and Its Applications to Engineering, Information Sciences, and Intelligent Systems, Kluwer, Dordrecht 1995, 353-363.
MR 1426861
[12] Novák V.:
Ultraproduct Theorem and Recursive properties of Fuzzy Logic. In: Hohle U. and E. P. Klement (eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets. A Handbook of the Mathematical Foundations of Fuzzy Set Theory, Kluwer, Dordrecht 1995, 341-370.
MR 1345649
[13] Novák V.: Fuzzy Logic Revisited. Proc. Int. Conference EUFIT'94, Verlag der Augustinus Buchhandlung, Aachen 1994, 496-499.
[14] Novák V.: A New Proof of Completeness of Fuzzy Logic and Some Conclusions for Approximate Reasoning. Proc. Int. Conference FUZZ-IEEE/IFES'95, Yokohama 1995, 1461-1468.
[15] Novák V.:
Paradigm, Formal Properties and Limits of Fuzzy Logic. Int. J. of General Systems 24 (1996), 377 405.
DOI 10.1080/03081079608945129