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On the Hilbert-Ackermann Theorem 
in Fuzzy Logic 

V I L É M NOVÁK 

A b s t r a c t . We deal with fuzzy logic in narrow sense. Our aim is to prepare the back­
ground for the resolution in fuzzy logic. The first step is to prove the analogue of the 
classical Hilbert-Ackerman's consistency theorem which is done in this paper. 

1991 M a t h e m a t i c s Subjec t C lassification: 03B50, 03B52 

1 Introduction 

In this paper , we continue the deve lopment of the theory of fuzzy logic in narrow 
sense. This concept has been studied in many papers and the te rm "fuzzy logic in 
narrow sense" has been introduced also by several authors . Recall t ha t we mean 
by it a special many-va lued logic s temming from Lukasiewicz one in which all the 
t ru th values are of equal impor tance and both syntax as well as semantics are 
graded. This logic plays an impor tan t role in the development of fuzzy logic in 
broader sense (approximate reasoning) as well as in fuzzy set theory. We claim 
this logic to become the language of the lat ter . 

In the l i terature , many a t t e m p t s to develop the resolution for fuzzy logic have 

been presented. Among the first ones were the papers by C. T. Lee. However, the 

a t t e m p t s have not been too successful for various reasons, among them the most 

impor tan t is the fact t ha t the authors sticked closely on the 

original proposal of L. A. Zadeh for fuzzy logic which has only three basic con­
nectives, namely A, V and -i which are interpreted in the interval [0, 1] by the 
operat ions A, V and 1 — x respectively. However, such logic is too weak and to be 
quite candid, even not fulfilling all the intuitive requirements to be a logic sui table 
for modeling of the vagueness phenomenon. Of course, this does not diminish 
the seminal impor tance of the L. A. Zadeh's work. Several systems of fuzzy logic 
appeared during the years. In this paper , we continue the development of one of 
the most universal systems whose propert ies have been discussed in many papers . 
Among them, recall especially tha t this fuzzy logic is direct bu t non-tr ivial gen­
eralization of classical one preserving many of its impor tan t propert ies, and the 
possibility to in t roduce addi t ional connectives which may be used for any purpose 
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without harming the main properties of fuzzy logic. Hence, most of the results in 
other systems of logic as well as in fuzzy set theory can be considered to be part 
of our logical system. 

One of the reasons why most attempts for resolution principle failed was the lack 
of sufficiently strong theorems justifying it. The best and most deeply penetrating 
work into the problem is the work of S. Lehmke [5] in which he developed the 
resolution principle for the propositional fuzzy logic. He introduced some unnec­
essary modifications, however, some of his results can be directly applied to the 
fuzzy logic in narrow sense presented below. To extend the resolution principle to 
the first-order fuzzy logic, we need some analogue of Herbrand theorem assuring 
us that the resolution method which also gets rid of quantifiers, is valid. This 
paper is a first step to this goal as we will present the analogue of the classical 
Hilbert-Ackermann's consistency theorem for fuzzy logic in narrow sense. To do 
this, we have to extend the language of fuzzy logic by the equality relation. 

2 Preliminaries 

We will recall only few basic notions of fuzzy logic in narrow sense. The reader 
may find the precise definitions and full proofs of theorems (if missing) in the cited 
papers. 

The set of truth values forms a residuated lattice 

£ = (L,V,A,cg),->, 1,0) 

where L is either a fimte chain, or L — [0,1], —» is the Lukasiewicz implication 
and 0 is the Lukasiewicz product. We will use the operation of Lukasiewicz sum 
defined by 

a 0 b = —1(—ia 0 -ib) a, b G L. 

Furthermore, we introduce the following symbols: 

n — times 
na = a 0 • • • 0 a . 

The language of first-order fuzzy logic consists of variables, constants, n-ary func­
tional and predicate symbols, binary predicate symbol = (equality sign), symbols 
for truth values a, a G L" binary connective =>and general quantifier V. 

Terms and formulas are defined as usual with the exception that all symbols for 
truth values are atomic formulas. 

tlThis is only auxiliary. As presented in [13], we can get rid of them. 
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A set of all the terms of a language J is denoted by Mj and a set of all the 
well-formed formulas by Fj. The set of all terms without variables is denoted by 
My. 

The common abbreviations of formulas - iA , AVB, AAH, A &; H, A&B, (3x)A, 
Ak are introduced (see [6, 7, 12, 15]). Moreover, we will use also the abbreviation 
A\/B defined by 

AxjB := - .(-1A & - .£ ) 

and call it Lukasiewicz disjunction. 

As explained in these works, syntax of fuzzy logic is evaluated by syntactic truth 
values. 

An evaluated formula is a couple 
[A; a] 

where A E Fj and a E L. The (syntactic) truth value a is an evaluation of the 
formula A in the syntax of fuzzy logic. 

In fuzzy logic, we deal with fuzzy sets of axioms. The propositional logical axioms 
are those of Rose and Rosser [18], and also 

(Tl) (= (a=>b)o(a - f Ь) 

where a —+ b denotes the symbol (atomic formula) for the truth value a —> b 
if a and b are given. 

(T2) \=(Vx)A=>At[t] 

for any term r. 

(T3) |= (Va?)(.A=>fl)<^(.A=>(Vx)5) 

provided that x is not free in A. 

Furthermore, we will introduce also the equality predicate fulfilling the following 
(common) logical axioms: 

(El) h x = x 

(E2) h (xi - yi)=> .. .=>(x„ = j/n)=>(p(«i,...,-Cn)=I>p(2/i,...,2/n)) 

(E3) h (xi = y i ) = > . . . = > ( x n = J/n)=»(/(-Ci,...,-Cn) = /( j/i , . . . ,y n )) 

for every n-ary functional symbol / and predicate symbol p. 

A special kind of fuzzy equality is the sharp one defined by 

^ ' \ 0 otherwise 
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in every model V. 

A theory T in the language J of first-order fuzzy logic (a fuzzy theory) is a triple 

T = (ALlAS)R) 

where AL C Fj, and As C Fj are fuzzy sets of logical and special axioms, 
respectively and R is a set of inference rules containing, at least, the rules RMP, 
rG a n d r R 6 , b <= L (cf. [6,7, 14]). 

An evaluated proof (or shortly, a proof) of a formula A from a fuzzy set A5 
of special axioms is a sequence of evaluated formulas which are logical or special 
axioms or they are derived using some many-valued inference rule. The provability 
degree in the fuzzy theory T = (AL , As, R) is given by 

(CsynAs)A = \f{Va\T(w) I w is a proof of A from As C Fj} 

where Varr(w) is a value of the proof H; in the fuzzy theory T. If (CsynAs)A = a, 
A £ Fj then we write 

T h a A . 

A formula A G Fj is true in the degree a in the fuzzy theory T if 

(C"CfM5)_4 = /\{V(A) \V\=T}. 

We write then 
T |=a A 

Note that 

-,«"• © ^6 n = am -> - 6 " = am — (6n -» 0) = (am 0 6n) — 0 = - ( a m <g> 6n). 

Therefore 
(= -,(Am> & • • • & > t m * ) ^ A m > v • • V ^ m " ) 

and it may be demonstrated that this equivalence is also theorem in the degree 1. 

A fuzzy theory is consistent if 

Valr(wM) 0 Va_T(tv-,y_) = 0 

holds for every formula A G F/(T) an<^ a u proofs iv^ of _4 and W~,A ""'A respectively. 

The following theorems will be used in the sequel. 

Theorem 1 (validity) If T \~a A and T |=& A then a < b holds for every for­
mula A. 

Theorem 2 (closure) Let A £ F/(T) and ^ be its closure. Then 

ThaA iff ThaA
f. 
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Theorem 3 A theory T is contradictory iff T h A holds for every formula 
AeFJ(T). 

This theorem has been proved in [7]. It follows from it that, if T is contradictory 
then for every formula there always is its proof w such that Val(tD) = 1. 

A fuzzy theory T is Henkin if Henkin axioms 

As(Ax[r}=>(Vx)A(x)) = 1 (1) 

are added to the fuzzy set of special axioms where r is a special constant for the 
formula (Vx)A(x). 

Theorem 4 Let T be a consistent theory, K a set of special constants for all 
the closed formulas (\fx)A and let AH be a fuzzy set of Henkin axioms (1) where 
AH(C) — 0 if C is not a Henkin axiom. Then the theory 

TH =TUAH 

IS a conservative extension of the theory T. 

Theorem 5 (deduction) Let A be a closed formula and T' = TU {1/A}. Then 
to every B there is n such that 

ThaA
n^B iff r\-aB. 

Theorem 6 (completeness II) A theory T is consistent iff it has a model. 

3 Further extensions 

In this section, we present several lemmas and theorems demonstrating some prop­
erties of fuzzy theories and provability. We will refer to logical axioms and formal 
theorems in the degree 1 presented in [7, 14]. They are denoted by (Tl) - (T i l ) 
and (Dl) - (D24). Most of these (schemes of) formulas can be found also in [6], 
Chapter 4. 

Let A(x\, . . ., xn) be a formula. Then its instance is a formula AXl)...)Xn[ti, • • •, tn] 
where t\,.. ., tn are terms. 

Lemma 1 Let A £ FJ^T) be a formula and A' its instance. Then: 

a) IfT\~a A then T h& A' where a < b. 

b) IfT^aA then T ^ 6 A! where a<b. 
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PROO F : a) This was proved as Lemma 14 in [7]. 

b) This follows immediately from the definition of the model using axiom (T9) 
(substitution) of [7]. • 

Lemma 2 a) Let T \-a A where a > 0. Then there is a proof w of A such that 
Val(uj) > 0. 

b) Let T ho AAB. Then T h a A and T h6 B and a A 6 = 0. 

c) Let T be consistent and T h a A. Then T h& Am for every m > 1 where 
b <a. 

PROOF: a) If such a proof does not exist the Val(uv) = 0 holds for every proof w 
of A which gives T ho A — a contradiction. 

b) Let a A b > 0. Then a > 0 as well as b > 0. Using Theorem (D5) from [7], we 
get T hc AAB where a eg) (a —» b) > c — a contradiction. 

c) Let b > a. Using (D15) we obtain T hc A where c > b > a which is a 
contradiction with the assumption. • 

Lemma 3 Let T \~a A. Then T = T U { °/A} is a conservative extension ofT. 

P R O O F : Let T h& B where B is some formula. Using the induction on the length 
of proof we will demonstrate that VaXT>(w'B) < b holds for every proof w'B of B 
in T. Then we will obtain b < \Jw, VaXT>(w'B) < b = \JWBVa\T(wB) by the 
definition of provability and, at the same, by the fact that T is extension of T. 

a) Let B be an axiom (logical or special). 

First, we assume that B := A*\ Then 

w'B := [A; a]SA . 

But since T h a A, we have a = ValT>(w'B) < \/WA ValT(wA) = a. 
i 

If B is not A then w'B := [B; b']SA[LA] and we have 

b' = V*\T,(w'B) < \f VZL\T(WB) 
WB 

by the definition of provability and the fact that B is also the axiom of T. 

b) Let 
»B--=[C\c]Wc,[C=>B;d\w,[B;c®d\ 

ГMP 

l)The symbol : = should b e read as "is defined as" or simply "is". 
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By the inductive assumption, c < \JW ., Varp(tvc*), d < \JW Valj^tv) and so 

ValTt(uj^) = c (x) d < \J (Va\T(wc) <*> ValT(tv)) < \J ValT(wB) = b. 

The case when the inference rule rQ is used follows immediately from the semi-
continuity of the semantic part of the rule and the inductive assumption. D 

Lemma 4 Let T be consistent and T \~a A. Then T h& —\A where b < --a. 

P R O O F : Let b > -ia. We will write the proof 

" := [M a')WA , M ; b'}w^A ,..., [A & -.A; a' ® b%MP 

where b = \ / bf which follows that 
V w —,A 

\J Val(tD) = a 0 b 
wA)w^A 

and thus, T hc A & -i^4 where c > a eg) b > 0. Therefore, T is contradictory by 
Lemma 2 a) — a contradiction. Q 

Lemma 5 Lel ever?/ formula closed A E Fj be tied with some closed formula A* 
in such a way that (A=>H)* is A*=^B*. Then from 

Csem ({ai/Ai \iel})B>b 

it follows that 

Csem({ai/A* \iel})B* >b 

where I is some index set (possibly empty). 

P R O O F : Let V e Csem ({ ai / At \ i e I}) and put V'(A) = V(A*) for every closed 
atomic formula A. Then V'(C) = V(C*) holds for every formula C G Fj. Let 
V e csem ({ cii/A* | i e I}). Then V(A*) > ai} i E I gives V'(A{) > a*, i.e. 
v , e Csem (I aJjAi | i E / } ) , and so V'(B) > b which implies V(B*) >b. D 

Lemma 6 fl; if T h a A=>H and T K H^H' lhen T Hc A=>H' where c > 
a eg) b. 

6; I/T \~a A&A' then T \~c (A=>B)&(A'=>B) where c > a. 
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P R OO F : a) Write down the proof 

w := [A=>B; a']Wl , [B&B1; b'}W2 , [(B&B')=>(B=>B'; l]LA ,..., 

[A=>B';a'®b\Mp, 

which gives the proposition. 

b) Using the logical axiom h (A=>A')=>((A' =>B)=>(A=>B)) we obtain the proofs 
w' of (A'=>B)=>(A=>B) and w" of (A=>B)=>(A'=>B), both with the value a' < 
a. From them, we can find a proof of the formula (A=>B)o(A'=>B) with the 
value a'. • 

The following theorem holds for every fuzzy equality. 

Theorem 7 (equality) Let T h a i ti = S{, i = 1, .. ., n. Then there are 
mi, . . . , mn such that 

T b A&A' b^a™1 ®---C0a™n 

where A' is a formula which is a result of replacing of the terms ti by the term S{ 
in A, respectively. 

P R O O F : By induction on the length of the formula. 

If A := p( l i , . . •, tn) where p is an n-ary predicate symbol then the proposition 
follows from the equality axiom (E2) and modus ponens. 

We show only the induction step for implication as the proof is analogous to the 
corresponding classical proof (cf. [20]). 

Let A := B=>C and 

T h 6 B&B' b> a ? 1 <8> • • • <g> a£* 

T hc C&C c > a,™'1 eg) • • • eg) an'n. 

where B'} C are formulas in which the replacements have been done. By Lemma 6 
we have 

T \~d (B=>C)o(B'=>C) d > b 

T hd/ (B'=>C)o(B'=>C) d' > c, 

i.e. T \~ei (B=>C)=>(B'=>C), e' > d eg) d'. Analogously we prove the opposite 
implication. • 

Let us remark that this theorem is quite weak. For small ai it is practically trivial 
and becomes interesting only for az- close to 1. The numbers mz- depend on the 
complexity of the given formula. The magnitude of b depends furthermore on 
the number of replacements of ti by S(. Quite analogously we may prove the 
equivalence theorem. 
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Theorem 8 (equivalence) Let A be a formula and Hi,..., Bn some of its sub-
formulas. Let T \~a% Bi^>B'i} i = 1 , . . . , n. Then there are m 1 ; . . . , mn such that 

T h6 A&A' b > a,™1 ® • • • <g> a™" 

where A' is a formula which is a result of replacing of the formulas S i , . . . , Bn in 
AbyB'u...,B'n. 

Let T be a fuzzy set of formulas. By Supp(V) we denote its support, i.e. A £ 
Supp(F) if T(A) > 0 . 

Theorem 9 (reduction for the consistency) A theory T' = T U F is contra­
dictory iff there are m\,..., mn and A\,..., An £ Supp(T) such that 

T h c - 1 A 7 l l v - V - ^ n 

where a2- = T(Ai), i = 1, . . . , n and c > -'(a™1 eg) • • • eg) a™n) or c = 1 if the 
right-hand side is equal to 1. 

P R O O F : Let T be contradictory. Then T' is also contradictory and, therefore, 
T ' r 0. Let A\,... ,An £ Supp(T) be formulas occurring in a proof WQ for which 
ValT'(tvo) > ~ ' ( a ] n i ® ••• ® arTn) (o r Varr'(tDo) = 1 if the sharp inequality is 
impossible; such a proof always exists). Then the theory 

T" = TU{"i/Ai \i = l , . . . ,n} 

is contradictory and the theory T' is its extension. By repeated application of 
the deduction theorem we may find a m i , . . . , mn and a proof w of the formula 
A™1 =>(• • • =>(A™n =>0) • •.) such that 

Valj>(tv) > ValT'(tvo)-

Using the formal theorem (T3) we get 

where c > Val(tvo). 

Vice-versa, by the equivalence theorem we have 

T h c - i ( / 4 f ^ . . . &,4™»). 

But then there is a proof 

™ ' = [M\ al]S^ > • • • > [An\ *n)SA i • • • , I*?' & ' ' • & < * " ; ^ ® ' ' ' ® <̂  

in V which follows that 

TVd(A^ U ••• k A™«) tc-y^A?1 k ••• kA™*) 

for some d > c eg) (a™1 eg) • • • eg) a™n) > 0, i. e. V is contradictory. 

mn] 
n J r M p 
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Corollary 1 A theory T' = T U { ~ia/-nA] is contradictory iffT h& mA for some 
m and b > ma or b = 1 if ma = 1. 

P R O O F : Then T h6 - i ( - .A ) m , 6 > -<- ' a ) m , but -i(-^a)m = ^(^ma) = ma which 
gives also -n(-iA)m^>mA. • 

4 Open fuzzy theories 

Most of the results presented before and in the other papers concern closed for­
mulas. They can be extended to open ones using the closure theorem. However, 
characterization of theories given by open axioms may also be interesting. We will 
follow the classical way as we want fuzzy logic to be developed, besides other, in 
parallel with classical one to demonstrate many classical results to be special cases 
of ours. However, methods in the proofs quite often differ as we have to use weaker 
properties. In what follows, we will deal with Henkin fuzzy theories as they can 
easily be obtained by conservative extension of the non-Henkin ones. 

Let T be a fuzzy theory and T# its conservative Henkin extension. Let r be the 
special constant for (\fx)A. We say that a formula A is in relation with a special 
constant r if it is either of the formulas 

Ax[r]=>(Vx)A 

or 
(Vx)A=>Ax[t) 

where t is a term without variables. 

Given a Henkin fuzzy theory T we will define, analogously as in classical logic, the 
fuzzy set of formulas A(T) as follows. 

A(T)(A) = { AS(B)WAL(B) | f A-.= BXl...Xn[t1,...,tn) 

where Q is any of the formulas 

Ax[r]=>(\fx)A 

(Vx)A=>Ax[t] 

t = t 

(h = «l )=>(• ' • =K(*n = Sn)=>f(h , . . . , *„ ) = /(Bl , . . . , Sn)) . . .) 

(*i = si)=>(--'=>((tn = sn)=>p(tu ... ,tn)=>p(su . .., sn)) . . .) 

and ti.Si, i = . . . , n are terms without variables, r is Henkin constant for (Vx)A 
and B is a formula not being any of the previous cases. 
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Lemma 7 Let T be a fuzzy theory. Then 

V\=TH iff A(TH)<V 

holds for every structure V for the language L(TH). 

P R O O F : Let V \= TH. Then AS)AL <V and V(AH) = 1 for every Henkin axiom 
AH. If B is a special axiom then 

AS(B) = A(Tn)(Bmi...Xw[tit.. . , .„]) < V(B). 

Using the substitution axiom and the definition of the closure we obtain 

V(B) <V(BXl„Xn[tu...)tn]). 

The opposite implication follows immediately from the definition of A(TH). • 

Corol lary 2 

Csem(As)B = Csem(A(TH))B. 

holds for every formula B G FL(T)-

We say that a formula B is a tautological consequence of the formulas 
A\x,..., An

n in the degree 6, p%\> 1, i = 1 . . . , n if 

N^-x.-.-x^--*-?)---)- (2) 
Note that (2) is equivalent with 

If b = 1 then we say that B is a tautological consequence of A\l,..., An
n. 

Lemma 8 Let w be a 'proof of A in T, VCI\T(W) = a and A' be a closed instance 
A' G L(TH) where TH is a Henkin extension of T. Then there are formulas 
Cl, • • •, Cm G A(T) such that A' is their tautological consequence and A(T)Ci <g) 
• • • A ( T ) C m < a . 

P R O O F : Consider the proof 

w := [A!; ax]Wi , . . . [An := .A; a n ] u > n . 

We prove by induction on the length of the proof that there always is the desired 
tautology. In what follows, we will denote A(T)C by the corresponding small 
letter c, possibly with the subscript. 
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a) Let A := a. Then A! := a, a £ A(T) and f= a^>a where a < a. 

b) Let Af be instance of special axiom. Then A! G A(T) and |= A/r^A7. By the 
assumption, A(T)(A7) = AS(A) < a. 

c) If A/ is an instance of Rose-Rosser's axioms (R1) - (R4) then Af is tautological 
consequence of the empty set of formulas. 

d) Let A := (\/x)B=>B. Then A' := (\/x)B'=>B'x[t'] G A(T) and we have |= 
A'=>A'. Similarly for the identity and equality axioms. 

e) Let A := (Vx)(C^>D)=>(C=>(Vx)D). Then 

.4' := (Vx)(Cf=>Df)=>(Cf=>(\/x)Df) 

where C7 , /}7 are closed instances of the formulas C, D. Furthermore, let r be 
a special constant for (Var)D'. Then (\/x)(C'=>D')=>(C'=>D'x[r]) G A(T) and 
D'x[r]-=>(\/x)D' G A(T). The desired tautology is then 

|= ((Vx)(C /=^D /)=^(C /=^D;[r]))=^((^[r]=^(Vx)D /)=^ 

((yx)(C
f=>Df)=>(Cf=>(\/x)Df))). 

In cases c) - e), a = 1. 

Let the induction assumption holds. 

f) Consider the proof 

[B; b]Wi,[B*>A;.e]Ua,[A; b®*}r„r • 

By the inductive assumption 

h ( C 1 & . - . & C m ) = > 5 / 

t=( .Di& •&Dm)=>(Bf=>Af) 

where ci (g> • • • cm < 6 and d\ ® •. • dn < e (recall that cx = A(T)C;, â  = A(T)D(). 
Then 

X>(Ci)®-- -®P(C m ) < D(£') 

T>(D 1 )0 . . . 0p (Z) n ) cx ) I ) (B / ) < 2>(X') 

for every V, which gives 

N ( ( C i & - . . & C m ) & ( . D i & . •&D m ) )=>A / 

and ci (8) • • • cm <g) d\ 0 • • • dn < b <g) e. 

g) Let A := (\/x)B and consider the proof 

[B; b]Wi ,[(Vx)B; b)ra . 
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By the induction assumption 

M e i f c •••tcCm)=>B',[r] 

where r is a special constant for (\fx)B', i.e. 

V(Cl)^---^V(Cm)<V(B,
x[r}) 

for every structure V. However, the formula (Bf
x[r]^>(\fx)B/) E A(T) and we 

have 

V(BI
X[T])%V(B'X[V]M^)B')<V((^)BI) 

for every structure V which follows 

(= ((Ci & • • • &cm) & ( H i H ^ ^ ) ^ ) ) - ^ ^ ) / ^ . 

D 

We will call the sequence of formulas A™*> • • • )^ITn special where mt > 1, i = 
1, . . . , n if 

N " " ^ 1 &•• •&<")• 

Lemma 9 Lel A.™1>• • • 1 ^™n ^e fl special sequence. Then 

V(Af1)0'--^)V(An'n) = O 

holds true for all structures V and mj- > mz'. i = 1 , . . . , n. 

P R O O F : Obvious. • 

Corollary 3 If A™1, . . ., A.™n *s a special sequence then A™1, . . . , A™n , 
H^1, . . ., Bgq is a special sequence. 

The order of the special constant r for (\/x)A is the number of occurrences of 
V in the latter. Analogously as in the classical logic, we define the fuzzy set 
Am(T) C A(T) which is obtained from A(T) by omitting all the formulas A from 
its support which are in relation to a special constants with the order greater than 
m. 

Lemma 10 Lel T be a Henkin theory, m > 0 and let there be a special se­
quence A™1,..., A™n E Am(T). Then there is a special sequence HJ1,. . . , App £ 
A m _ i (T) . 
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PROOF: Analogously as in the classical proof (cf. [20], Lemma 2 in Section 4.3) 
we will consider a special sequence consisting either of formulas Ami, . . . , Amp G 
A m _i (T) or those being in relation to special constants r l 5 . . . , r5 with the same 
order as a special constant r with the highest order. Let the remaining formulas 
in the considered special sequence be 

Bx[r]=>(\/x)B 

(\/x)B=>Bx[U]} t = l , . . . , g . 

Let A?; := Cy[5]=>(V^)C or A( := (Va?)C"=->Cy[i]. Since the order of s is smaller 
than or equal to that of r , (\fx)C can occur neither in Cy[t] nor in Cy[s]. Further­
more, (V.T)H --fi (\/x)C since s ^ r . Hence, no A{ contains (\/x)B. Hence, we have 
the special sequence 

.4™', . . . , Am', (Bx[r]MVx)B)m, ((^x)B^Bx[t1])m^ ,... ((Vx)B=>Bx[tq})m><,, 

which means that 

D(Ai)Wl ® • - •®V(Ap)
m* ®V(Bx[r]=>(Vx)B)m eg) 

(S)V((\/x)B=>Bx[t1])m'i ®-.-®V((Vx)B=>Bx[tq])m>* = 0 

holds for every V. Furthermore, the value of the Lukasiewicz conjunction of the 
formulas 

Am\...,Am',(Bx[r]=>(Vx)B)m,(\Jx)BMB*[h}m^ & • • • & Bx[tq]
m><) (3) 

is equal to 0 for every V and thus, it is a special sequence as well. 

Let now, as the first step, (\/x)B be replaced by Bx[r] and, as the second step, the 
latter by Bx\ti]) i = 1 , . . . , q. Furthermore, we will replace all the occurrences of r 
in all the formulas by the term t{. Then we obtain two special sequences 

Am>,... ,Am> , (B I [ r ]=>5 e [< 1 r '> & •••&Bx[tq])m>* (A) 

(A(pri,---AA^r\(B,\t^B^\tir
,n & ••• &B<*'>[.,])ra", (5) 

i = 1 , . . . , q. We want to demonstrate that 

Am'\..., A?> , (AP)< . • • •. (41))m;. (4?))mi, • • •, ( 4 ? ) r ; . (6) 
is a special sequence for some m'-, j = 1 , . . . , p. 

Assume the opposite, i.e. for every ra'-,m' there exists V such that 

( g ) X > ( ^ ) m i ® (g) V(Af)m'i>Q. (7) 
J = l j = l , . . . , p 

i = l , . . . , q 

Let us find m' such that 
PJ 

V(BX[U}) - (D(SW[<.])-; , ® • • - ® P ( B « [ g ) < ) = 0 



On the Hilbert-Ackennann Theorem in Fuzzy Logic 71 

(this is possible due to nilpotency of eg) and the inequality (7)). This may hold 
true only if V(BX[U)) = 1 and V(Bx

i)[tl])rn'^ eg) • • • ® V(Bx
i)[tq)))

m'^ = 0. But 
then V(Bx[r]=^(Bx[tl]

m^ & • • • & .BJC[tg]
m'«) = 1, from which follows that (4) is 

not special — a contradiction. 

(i) 

Finally, analogously as in the classical proof, we may demonstrate that each AK- J 

belongs to A m _ i (T) or is in relation with some of the constants Ti,r5. Then the 
previous procedure can be repeated to get rid of all the special constants with the 
order greater than m — 1. • 

We say that a formula A is a fuzzy quasitautology in the degree a if 

h . B i & •• •&.B*=M 

where Bi are closed instances of the equality axioms. Formally, we will write 

\=U-

The following is a fuzzy analogy the the famous Hilbert-Ackermann's consistency 
theorem. However, as we have no direct proof of the tautology theorem (saying 
that every tautology is a theorem), we are forced to use the completeness theorem 
in its proof. 

Theorem 10 (consistency) Open theory T is contradictory iff there are 
p i , . . . , p„ and special axioms A\,. . ., An of the theory T such that 

where Ai are instances of the special axioms and b > -^(a\l ® •••(g) a^n) where 
ai - As(Ai), i = 1, . . . , n . 

P R O O F : Let T be contradictory. Then T h x / x and r / r is instance of this 
formula. Hence, by Lemma 8 and the fact that there is a proof of r / r with the 
value 1, there are formulas A\, ... ,-An-i G Supp(A(T)) such that 

|=6 Ai& ••• &.4 n_i=>r / r . 

for b fulfilling the above condition. 

As r / r G A(T), we conclude that 

where A i , . . . , An G A(T). By Lemma 10, there are p i , . . . ,p n and a special 
sequence A\x,..., .4£™ of formulas from A0(T). Then 

^ Si & . . . & .Bjb-^t-iA?1 V • • V-«-4£n) (8) 
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where B i , . . . , Bk are instances of the equality axioms occurring in A\x,..., A^ 
(the exponents at B{ are equal to 1 as all these instances are theorems in the 
degree 1), i.e. - lAr^V • • • V""1-^* ^s *he required quasitautology. 

Vice-versa, from Lemma la) we obtain 

TY-aA^&i ••• &A£2 a > a ^ ( g ) . . . 0 a P n ' 

because if a7; = A5(AU), then T h a . A; which follows T h5. A" where a > ai > a2-
and we may use formal theorem (D8). 

Let V \= T. Then T>(Af & - . . & i £ 2 ) > a. But D G C5em(A(T)) which follows 

• ^(-i?1 V ' • • & -^n2) - ^ ( -K 1 & • • • & i£2)) > & 

and a0b > 0. But no such structure V may exist and thus, T is contradictory by 
the completeness theorem. • 

5 Conclusion 

This paper is a continuation of the development of the theory of fuzzy logic in 
narrow sense. Our goal was to prove some properties of open fuzzy theories and 
especially, to prove analogy of the classical Hilbert-Ackermann's consistency the­
orem. This theorem is stated in the previous section as Theorem 10. 
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