Previous |  Up |  Next

Article

References:
[1] Alderson H. P.: On the septimic character of 2 and 3. Proc. Camb. Phil. Soc. 74 (1973), 421-433. MR 0323763 | Zbl 0265.10003
[2] Ankeny N. C.: Criterion for rth power residuacity. Pacific J. Math. 10 (1960), 1115-1124. DOI 10.2140/pjm.1960.10.1115 | MR 0118708 | Zbl 0113.26801
[3] Jacobi C. G. J.: De residuis cubicis commentatio numerosa. J. für Reine und Angew. Math. 2 (1827), 66-69.
[4] Jakubec S.: Note on the Jacobi sum. Seminaire de theorie des nombres de Bordeaux to appear (1994).
[5] Lehmer E.: The quintic character of 2 and 3. Duke Math. J. 18 (1951), 11-18. DOI 10.1215/S0012-7094-51-01802-9 | MR 0040338 | Zbl 0045.02002
[6] Leonard P. A., Williams K. S.: The septic character of 2, 3, 5 and 7. Pacific J. Math. 52 (1974), 143-147. MR 0364064
[7] Muskat J. B.: On the solvability of $x^c \equiv e (\bmod p). Pacific J. Math. 14 (1964), 257-260. MR 0159781 | Zbl 0117.27701
[8] Parnami J. C., Agrawal M. K., Rajwade A.R.: Criterion for 2 to be l-th power. Acta Arith. 43 (1984), 361-364. MR 0756287
[9] Williams K. S.: Explicit criteria for quintic residuacity. Math. Comp. 30 (1974), 1-6. MR 0412089
Partner of
EuDML logo